Israel Journal of Mathematics

, Volume 212, Issue 2, pp 757–790 | Cite as

Sard theorems for Lipschitz functions and applications in optimization

  • Luc BarbetEmail author
  • Marc Dambrine
  • Aris DaniilidisEmail author
  • Ludovic RiffordEmail author


We establish a “preparatory Sard theorem” for smooth functions with a partially affine structure. By means of this result, we improve a previous result of Rifford [17, 19] concerning the generalized (Clarke) critical values of Lipschitz functions defined as minima of smooth functions. We also establish a nonsmooth Sard theorem for the class of Lipschitz functions from R d to R p that can be expressed as finite selections of C k functions (more generally, continuous selections over a compact countable set). This recovers readily the classical Sard theorem and extends a previous result of Barbet–Daniilidis–Dambrine [1] to the case p > 1. Applications in semi-infinite and Pareto optimization are given.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Barbet, A. Daniilidis and M. Dambrine, The Morse–Sard Theorem for Clarke critical values, Advances in Mathematics 242 (2013), 217–227.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S. Bates, Toward a precise smoothness hypothesis in Sard’s theorem, Proceedings of the American Mathematical Society 117 (1993), 279–283.MathSciNetzbMATHGoogle Scholar
  3. [3]
    J. Bolte, A. Daniilidis, A. Lewis and M. Shiota, Clarke subgradients of stratifiable functions, SIAM Journal on Optimization 18 (2007), 556–572MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    J. Borwein and X. Wang, Lipschitz functions with maximal subdifferentials are generic, Proceedings of the American Mathematical Society 128 (2000), 3221–3229.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    F. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, Wiley-Interscience, New York, 1983.zbMATHGoogle Scholar
  6. [6]
    G. Comte and Y. Yomdin, Tame Geometry with Application in Smooth Analysis, Lecture Notes in Mathematics, Vol. 1834, Springer, Berlin, 2004.zbMATHGoogle Scholar
  7. [7]
    A. Daniilidis and J. Malick, Filling the gap between lower-C 1 and lower-C 2 functions, Journal of Convex Analysis 12 (2005), 315–329.MathSciNetzbMATHGoogle Scholar
  8. [8]
    H. Federer, Curvature measures, Transactions of the American Mathematical Society 93 (1959), 418–491.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    W. Hirsch, Differential Topology, Graduate Texts in Mathematics, Vol. 33, Springer, New York–Heidelberg, 1976.CrossRefzbMATHGoogle Scholar
  10. [10]
    A. Ioffé, Critical values of set-valued maps with stratifiable graphs. Extensions of Sard and Smale–Sard theorems, Proceedings of the American Mathematical Society 136 (2008), 3111–3119.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A. Ioffe, An invitation to tame optimization, SIAM Journal on Optimization 19 (2008), 1894–1917.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    A. Ioffe, The principle of Lagrange and critical values of optimization problemas, Pacific Journal of Optimization 6 (2010), 341–352.MathSciNetzbMATHGoogle Scholar
  13. [13]
    A. Jofre, Image of critical points set for nonsmooth mappings and applications, in Contributions à l’analyse non-diffrentiable avec applications à l’optimisation et à l’analyse non-linéaire, Thèse 1989, Université de Pau et des Pays de l’Adour, France.Google Scholar
  14. [14]
    K. Kurdyka, P. Orro and S. Simon, Semialgebraic Sard theorem for generalized critical values, Journal of Differential Geometry 56 (2000), 67–92.MathSciNetzbMATHGoogle Scholar
  15. [15]
    A. Morse, The behavior of a function on its critical set, Annals of Mathematics 40 (1939), 62–70.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    A. Norton, The Zygmund Morse–Sard theorem, Journal of Geometric Analysis 4 (1994), 403–424.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    L. Rifford, A Morse–Sard theorem for the distance function on Riemannian manifolds, Manuscripta Mathematica 113 (2004), 251–265.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    L. Rifford, À propos des sphères sous-riemanniennes, Bulletin of the Belgian Mathematical Society. Simon Stevin 13 (2006), 521–526.MathSciNetzbMATHGoogle Scholar
  19. [19]
    L. Rifford, On viscosity solutions of certain Hamilton–Jacobi equations: Regularity results and generalized Sard’s theorems, Communications in Partial Differential Equations 33 (2008), 517–559.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    R. T. Rockafellar and R. Wets, Variational Analysis, Grundlehren der Mathematischen Wissenschaften, Vol. 317, Springer, Berlin, 1998.CrossRefzbMATHGoogle Scholar
  21. [21]
    A. Sard, The measure of the critical values of differentiable maps, Bulletin of the American Mathematical Society 48 (1942), 883–890.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Y. Yomdin, The geometry of critical and near-critical values of differentiable mappings, Mathematische Annalen 264 (1983), 495–515.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2016

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques et de leurs ApplicationsUMR CNRS 5142 Université de Pau et des Pays de l’AdourPauFrance
  2. 2.DIM–CMM, UMI CNRS 2807Universidad de Chile Beauchef 581Santiago de ChileChile
  3. 3.Departament de MatemàtiquesUniversitat Autònoma de BarcelonaBellaterraSpain
  4. 4.Laboratoire J. A. DieudonnéUniversité Nice Sophia Antipolis Parc ValroseNice Cedex 2France

Personalised recommendations