Israel Journal of Mathematics

, Volume 212, Issue 2, pp 677–703 | Cite as

Bi-Lipschitz bijection between the Boolean cube and the Hamming ball

  • Itai BenjaminiEmail author
  • Gil CohenEmail author
  • Igor Shinkar


We construct a bi-Lipschitz bijection from the Boolean cube to the Hamming ball of equal volume. More precisely, we show that for all even n ∈ N there exists an explicit bijection ψ: {0, 1} n → {x ∈ {0, 1} n+1 : |x| > n/2} such that for every xy ∈ {0, 1} n , \(\frac{1}{5} \leqslant \frac{{dis\tan ce\left( {\psi \left( x \right),\psi \left( y \right)} \right)}}{{dis\tan ce\left( {x,y} \right)}} \leqslant 4,\) where distance(·, ·) denotes the Hamming distance. In particular, this implies that the Hamming ball is bi-Lipschitz transitive.

This result gives a strong negative answer to an open problem of Lovett and Viola (2012), who raised the question in the context of sampling distributions in low-level complexity classes. The conceptual implication is that the problem of proving lower bounds in the context of sampling distributions requires ideas beyond the sensitivity-based structural results of Boppana (1997).

We study the mapping ψ further and show that it (and its inverse) are computable in DLOGTIME-uniform TC0, but not in AC0. Moreover, we prove that ψ is “approximately local” in the sense that all but the last output bit of ψ are essentially determined by a single input bit.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AB07]
    O. Angel and I. Benjamini, A phase transition for the metric distortion of percolation on the hypercube, Combinatorica 27 (2007), 645–658.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Aus13]
    T. Austin, On the failure of concentration for the l -ball, 2013, http://arxiv. org/abs/1309.3315.Google Scholar
  3. [Bop97]
    R. Boppana, The average sensitivity of bounded-depth circuits, Information Processing Letters 63 (1997), 257–261.MathSciNetCrossRefGoogle Scholar
  4. [BvETK51]
    N. G. De Bruijn, C. van Ebbenhorst Tengbergen and D. Kruyswijk, On the set of divisors of a number, Nieuw Archief voor Wiskunde 23 (1951), 191–193, 1951.MathSciNetzbMATHGoogle Scholar
  5. [Fri98]
    E. Friedgut, Boolean functions with low average sensitivity depend on few coordinates, Combinatorica 18 (1998), 27–35.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [GGN10]
    O. Goldreich, S. Goldwasser and A. Nussboim, On the implementation of huge random objects SIAM Journal on Computing 39 (2010), 2761–2822.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [Gra88]
    R. L. Graham, Isometric embeddings of graphs, in Selected Topics in Graph Theory, 3, Academic Press, San Diego, CA, 1998, pp. 133–150.Google Scholar
  8. [Har66]
    L. H. Harper, Optimal numbering and isoperimetric problems on graphs, Journal of Combinatorial Theory 1 (1966), 385–393.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [Har76]
    S. Hart, A note on the edges of the n-cube, Discrete Mathamatics 14 (1976), 157–163.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Has86]
    J. Hastad, Almost optimal lower bounds for small depth circuits, in Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, Berkeley, CA, 1986, ACM, New York, NY, 1986, pp. 6–20.Google Scholar
  11. [HLN87]
    J. Hastad, T. Leighton and M. Newman, Reconfiguring a hypercube in the presence of faults, in Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, New York, NY, 1987, ACM, New York, NY, 1987, pp. 274–284.Google Scholar
  12. [Hol11]
    A. E. Holroyd, Geometric properties of poisson matchings, Probability Theory and Related Fields 150 (2011), 511–527.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [Kuh55]
    H. W. Kuhn, The Hungarian method for the assignment problem, Naval Research Logistics Quarterly 2 (1955), 83–97.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [Lin02]
    N. Linial, Finite metric spaces—combinatorics, geometry and algorithms, in Proceedings of the International Congress of Mathematicians, Vol. III, (Beijing, 2002), Higher Education Press, Beijing, 2002, pp. 573–586.zbMATHGoogle Scholar
  15. [LV12]
    S. Lovett and E. Viola, Bounded-depth circuits cannot sample good codes, Computational Complexity 21 (2012), 245–266.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [Lyn77]
    N. Lynch, Log space recognition and translation of parenthesis languages, Journal of the ACM 24 (1977), 583–590.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [MS04]
    B. Morris and A. Sinclair, Random walks on truncated cubes and sampling 0-1 knapsack solutions, SIAM Journal on Computing 34 (2004), 195–226.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [Vio12]
    E. Viola, The complexity of distributions, SIAM Journal on Computing 41 (2012), 191–218.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [Vio14]
    E. Viola, Extractors for circuit sources, SIAM Journal on Computing 43 (2014), 655–672.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [vLW01]
    J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press, Cambridge, 2001.CrossRefzbMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2016

Authors and Affiliations

  1. 1.Department of MathematicsWeizmann Institute of ScienceRehovotIsrael
  2. 2.Department of Computer Science and Applied MathematicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations