Skip to main content
Log in

Grothendieck–Lefschetz theorem with base locus

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We compute the divisor class group of the general hypersurface Y of a complex projective normal variety X of dimension at least four containing a fixed base locus Z. We deduce that completions of normal local complete intersection domains of finite type over C of dimension ≥ 4 are completions of UFDs of finite type over C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Brevik and S. Nollet, Noether–Lefschetz theorem with base locus, International Mathematics Research Notices (2011), 1220–1244.

    MATH  Google Scholar 

  2. J. Brevik and S. Nollet, Developments in Noether–Lefschetz theory, in Hodge Theory, Complex Geometry and Representation Theory, Contemporary Mathematics, Vol. 608, American Mathematical Society, Providence, RI, 2014, pp. 21–50.

    MATH  Google Scholar 

  3. J. Brevik and S. Nollet, Srinivas’ question for rational double points, Michigan Mathematical Journal 64 2015 155–168.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Grothendieck, Cohomologie locale des fasceaux cohérents et théorèms de Lefschetz locaux et globaux, North-Holland, Amsterdam, 1968.

    Google Scholar 

  5. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 52, Springer-Verlag, New York–Heidelberg, 1977.

    Book  Google Scholar 

  6. K. Joshi, A Noether–Lefschetz theorem and applications, Journal of Algebraic Geometry 4 1995, 105–135.

    MathSciNet  MATH  Google Scholar 

  7. J. P. Jouanolou, Théorèmes de Bertini et Applications, Progress in Mathematics, Vol. 42, Birkhäuser, Boston, MA, 1983.

    MATH  Google Scholar 

  8. S. Lefschetz, L’analysis situs et la géométrie algébrique, Gauthier-Villars, Paris, 1924.

    MATH  Google Scholar 

  9. A. Lopez, Noether–Lefschetz theory and Picard group of projective surfaces, Memoirs of the American Mathematical Society 438 (1991).

    MATH  Google Scholar 

  10. B. Moishezon, On algebraic homology classes on algebraic varieties, Mathematics of the USSR-Izvestia 1 1967, 209–251.

    Article  MATH  Google Scholar 

  11. M. Noether, Zur Grundlegung der Theorie algebraischen Raumcurven, Abhandlungen der Königlichen Akademie der Wissenschaften, Berlin, 1883.

  12. S. Nollet, Bounds on multisecant lines, Collectanea Mathematica 49 1998, 447–463.

    MathSciNet  MATH  Google Scholar 

  13. A. J. Parameswaran and V. Srinivas, A variant of the Noether–Lefschetz theorem: some new examples of unique factorization domains, Journal of Algeraic Geometry 3 1994, 81–115.

    MathSciNet  MATH  Google Scholar 

  14. C. Peskine and L. Szpiro, Liaison des variétés algébriques I, Inventiones Mathematicae 26 1972, 271–302.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. V. Ravindra and V. Srinivas, The Grothendieck–Lefschetz theorem for normal projective varieties, Journal of Algebraic Geometry 15 2006, 563–590.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. V. Ravindra and V. Srinivas, The Noether–Lefschetz theorem for the divisor class group, Journal of Algebra 332 2009, 3373–3391.

    Article  MathSciNet  MATH  Google Scholar 

  17. G. V. Ravindra and A. Tripathi, Extensions of vector bundles with applications to Noether–Lefschetz theorems, Communications in Contemporary Mathematics 15 (2013).

  18. J. Ruiz, The Basic Theory of Power Series, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1993.

    Book  Google Scholar 

  19. V. Srinivas, Some geometric methods in commutative algebra, in Computational Commutative Algebra and Combinatorics (Osaka, 1999), Advanced Studies in PureMathematics, Vol. 33, Mathematical Society of Japan, Tokyo, 2002, pp. 231–276.

    MATH  Google Scholar 

  20. J. C. Tougeron, Une généralisation du théorème des fonctions implicites, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. Séries A et B 262 (1966), A487–A489.

    MathSciNet  MATH  Google Scholar 

  21. C. Voisin, Hodge Theory and Complex Algebraic Geometry. I, Cambridge Studies in Advanced Mathematics, Vol. 77, Cambridge University Press, Cambridge, 2003.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Brevik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brevik, J., Nollet, S. Grothendieck–Lefschetz theorem with base locus. Isr. J. Math. 212, 107–122 (2016). https://doi.org/10.1007/s11856-016-1281-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-016-1281-1

Keywords

Navigation