Skip to main content

Graded elementary quasi-Hopf algebras of tame representation type

Abstract

The class of graded elementary quasi-Hopf algebras of tame type is classified. Together with our previous work [19], this completes the trichotomy for such a class of algebras according to their representation types. In addition, new examples of genuine elementary quasi-Hopf algebras, and accordingly finite pointed tensor categories, are provided.

This is a preview of subscription content, access via your institution.

References

  1. N. Andruskiewitsch and H-J. Schneider, On the classification of finite-dimensional pointed Hopf algebras, Annals of Mathematics 171 (2010), 375–417.

    MathSciNet  Article  MATH  Google Scholar 

  2. I. E. Angiono, Basic quasi-Hopf algebras over cyclic groups, Advances in Mathematics 225 (2010), 3545–3575.

    MathSciNet  Article  MATH  Google Scholar 

  3. M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge University Press, 1995.

  4. D. Bulacu and E. Nauwelaerts, Radford’s biproduct for quasi-Hopf algebras and bosonization, Journal of Pure and Applied Algebra 174 (2002), 1–42.

    MathSciNet  Article  MATH  Google Scholar 

  5. C. Cibils and M. Rosso, Hopf quivers, Journal of Algebra 254 (2002), 241–251.

    MathSciNet  Article  MATH  Google Scholar 

  6. V. G. Drinfeld, Quasi-Hopf algebras, Leningrad Mathematical Journal 1 (1990), 1419–1457.

    MathSciNet  Google Scholar 

  7. V. G. Drinfeld, S. Gelaki, D. Nikshych and V. Ostrik, On braided fusion categories I, Selecta Mathematica-New Series 16 (2010), 1–119.

    MathSciNet  Article  MATH  Google Scholar 

  8. Ju. A. Drozd, Tame and wild matrix problems, (Russian), in Matrix problems (Russian), Akad. Nauk Ukrain. SSR Inst. Mat., Kiev, 1977, pp. 104–114.

  9. P. Etingof and S. Gelaki, On radically graded finite-dimensional quasi-Hopf algebras, Moscow Mathematical Journal 5 (2005), 371–378.

    MathSciNet  MATH  Google Scholar 

  10. P. Etingof and S. Gelaki, The small quantum group as a quantum double, Journal of Algebra 322 (2009), 2580–2585.

    MathSciNet  Article  MATH  Google Scholar 

  11. P. Etingof and S. Gelaki, Finite dimensional quasi-Hopf algebras with radical of codimension 2, Mathematical Research Letters 11 (2004), 685–696.

    MathSciNet  Article  MATH  Google Scholar 

  12. P. Etingof and S. Gelaki, Liftings of graded quasi-Hopf algebras with radical of prime codimension, Journal of Pure and Applied Algebra 205 (2006), 310–322.

    MathSciNet  Article  MATH  Google Scholar 

  13. P. Etingof and V. Ostrik, Finite tensor categories, Moscow Mathematical Journal 4 (2004), 627–654.

    MathSciNet  MATH  Google Scholar 

  14. S. Gelaki, Basic quasi-Hopf algebras of dimension n 3, Journal of Pure and Applied Algebra 198 (2005), 165–174.

    MathSciNet  Article  MATH  Google Scholar 

  15. E. Green and Ø. Solberg, Basic Hopf algebras and quantum groups, Mathematische Zeitschrift 229 (1998), 45–76.

    MathSciNet  Article  MATH  Google Scholar 

  16. Hua-Lin Huang, Quiver approaches to quasi-Hopf algebras, Journal of Mathematical Physics 50 (2009), 043501, 9 pp.

    MathSciNet  Article  Google Scholar 

  17. Hua-Lin Huang, From projective representations to quasi-quantum groups, Science China Mathematics 55 (2012), 2067–2080.

    MathSciNet  Article  MATH  Google Scholar 

  18. Hua-Lin Huang and G. Liu, On the structure of tame basic Hopf algebras II, Journal of Algebra 321 (2009), 2650–2669.

    MathSciNet  Article  MATH  Google Scholar 

  19. Hua-Lin Huang, G. Liu and Y. Ye Quivers, quasi-quantum groups and finite tensor categories, Communications in Mathematical Physics 303 (2011), 595–612.

    MathSciNet  Article  MATH  Google Scholar 

  20. Hua-Lin Huang, G. Liu and Y. Ye, On braided linear Gr-categories. arXiv:1310.1529.

  21. G. Liu, Classification of finite dimensional basic Hopf algebras according to their representation type, Contemporary Mathematics 478 (2009), 103–124.

    Article  Google Scholar 

  22. G. Liu, On the structure of tame graded basic Hopf algebras, Journal of Algebra 299 (2006), 841–853.

    MathSciNet  Article  MATH  Google Scholar 

  23. G. Liu, Basic Hopf algebras of tame type, Algebras and Representation Theory 16 (2013), 771–791.

    MathSciNet  Article  MATH  Google Scholar 

  24. G. Liu and F. Li, Pointed Hopf algebras of finite corepresentation type and their classifications, Proceedings of the American Mathematical society 135 (2007), 649–657.

    MathSciNet  Article  MATH  Google Scholar 

  25. C. M. Ringel, The representation type of local algebras, in Proceedings of the International Conference on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974), Paper No. 22, 24 pp. Carleton Mathmaticla Lecture Notes, No. 9, Carleton Univ., Ottawa, Ont., 1974.

    Google Scholar 

  26. C. A. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, Cambridge, 1994.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Lin Huang.

Additional information

Supported by PCSIRT IRT1264, SRFDP 20130131110001, NSFC 11371186 and SDNSF ZR2013AM022.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, HL., Liu, G. & Ye, Y. Graded elementary quasi-Hopf algebras of tame representation type. Isr. J. Math. 209, 157–186 (2015). https://doi.org/10.1007/s11856-015-1214-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-015-1214-4

Keywords

  • Abelian Group
  • Hopf Algebra
  • Representation Type
  • Standard Generator
  • Monoidal Category