Skip to main content
Log in

Derived subdivisions make every PL sphere polytopal

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We give a simple proof that some iterated derived subdivision of every PL sphere is combinatorially equivalent to the boundary of a simplicial polytope, thereby resolving a problem of Billera (personal communication).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Adiprasito and B. Benedetti, Subdivisions, shellability, and collapsibility of products, 2013 preprint. available online at arXiv:1202.6606.

  2. R. H. Bing, Some aspects of the topology of 3-manifolds related to the Poincaré conjecture, in Lectures on Modern Mathematics, Vol. II, Wiley, New York, 1964, pp. 93–128.

    Google Scholar 

  3. H. Bruggesser and P. Mani, Shellable decompositions of cells and spheres, Mathematica Scandinavica 29 (1971), 197–205.

    MathSciNet  Google Scholar 

  4. M. Davis, Computability and Unsolvability, McGraw-Hill Series in Information Processing and Computers, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1958.

    MATH  Google Scholar 

  5. J. A. de Loera, J. Rambau and F. Santos, Triangulations, Algorithms and Computation in Mathematics, Vol. 25, Springer-Verlag, Berlin, 2010.

    MATH  Google Scholar 

  6. G. Ewald and G. C. Shephard, Stellar subdivisions of boundary complexes of convex polytopes., Mathematische Annalen 210 (1974), 7–16.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. F. P. Hudson, Piecewise Linear Topology, University of Chicago Lecture Notes, W. A. Benjamin, Inc., New York-Amsterdam, 1969.

    MATH  Google Scholar 

  8. I. Izmestiev and J.-M. Schlenker, Infinitesimal rigidity of polyhedra with vertices in convex position, Pacific Journal of Mathematics 248 (2010), 171–190.

    Article  MATH  MathSciNet  Google Scholar 

  9. W. B. R. Lickorish, Unshellable triangulations of spheres, European Journal of Combinatorics 12 (1991), 527–530.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Mijatović, Simplifying triangulations of S 3, Pacific Journal of Mathematics 208 (2003), 291–324.

    Article  MATH  MathSciNet  Google Scholar 

  11. N. E. Mnëv, The universality theorems on the classification problem of configuration varieties and convex polytopes varieties, in Topology and Geometry-Rohlin Seminar, Lecture Notes in Mathematics, Vol. 1346, Springer, Berlin, 1988, pp. 527–543.

    Chapter  Google Scholar 

  12. R. Morelli, The birational geometry of toric varieties, Journal of Algebraic Geometry 5 (1996), 751–782.

    MATH  MathSciNet  Google Scholar 

  13. A. Nabutovsky, Einstein structures: Existence versus uniqueness, Geometric and Functional Analysis 5 (1995), 76–91.

    Article  MATH  MathSciNet  Google Scholar 

  14. U. Pachner, Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten, Abhandlungen aus dem Mathematische Seminar der Universität Hamburg 57 (1987), 69–86.

    Article  MATH  MathSciNet  Google Scholar 

  15. F. Santos, Non-connected toric Hilbert schemes, Mathematische Annalen 332 (2005), 645–665.

    Article  MATH  MathSciNet  Google Scholar 

  16. F. Santos, Geometric bistellar flips: the setting, the context and a construction, in International Congress of Mathematicians. Vol. III, European Mathematical Society, Zürich, 2006, pp. 931–962.

    Google Scholar 

  17. I. A. Volodin, V. E. Kuznecov and A. T. Fomenko, The problem of the algorithmic discrimination of the standard three-dimensional sphere, Uspehi Matematičheskih Nauk 29 (1974), 71–168.

    MathSciNet  Google Scholar 

  18. J. Włodarczyk, Decomposition of birational toric maps in blow-ups & blow-downs, Transactions of the American Mathematical Society 349 (1997), 373–411.

    Article  MATH  MathSciNet  Google Scholar 

  19. E. C. Zeeman, Seminar on Combinatorial Topology, Institut des Hautes Études Scientifiques, Paris, 1966.

    MATH  Google Scholar 

  20. G. M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, Vol. 152, Springer, New York, 1995, Revised edition, 1998; seventh updated printing, 2007.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim A. Adiprasito.

Additional information

K. Adiprasito has been supported by an EPDI/IPDE postdoctoral fellowship and by the Romanian NASR, CNCS-UEFISCDI, project PN-II-ID-PCE-2011-3-0533.

I. Izmestiev has been supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. 247029-SDModels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adiprasito, K.A., Izmestiev, I. Derived subdivisions make every PL sphere polytopal. Isr. J. Math. 208, 443–450 (2015). https://doi.org/10.1007/s11856-015-1206-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-015-1206-4

Keywords

Navigation