Skip to main content
Log in

Asymptotic behavior of S n degrees associated with rational functions

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Given an infinte series in the Schur functions \(\sum {{m_\lambda }} {S_\lambda }({x_1}, \ldots ,{x_k})\) which converges to a nice rational function, we compute the asympotics of the sequence \({c_n} = \sum {\{ {m_\lambda }{f^\lambda }|\lambda \vdash n\} } \), where \({f^\lambda }\) is the degree of the S n character corresponding to λ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ya. Belov, Rationality of Hilbert series with respect to free algebras, Russian Mathematical Surveys 52 (1997), 394–395.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Berele, Properties of hook Schur functions with applications to p.i. algebras, Advances in Applied Mathematics 41 (2008), 52–75.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Berele and A. Regev, Asymptotic behaviour of codimensions of p.i. algebras satisfying Capelli identities, Transactions of the American Mathematical Society 360 (2008), 5155–5172.

    Article  MATH  MathSciNet  Google Scholar 

  4. V. Drensky, Codimensions of T-ideals and Hilbert series of relatively free algebras, Journal of Algebra 91 (1984), 1–17.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Giambruno and M. Zaicev, On codimension growth of finitely generated associative algebras, Advances in Mathematics 240 (2008), 221–243.

    Google Scholar 

  6. A. Giambruno and M. Zaicev, Polynomial Identities and Asymptotic Methods, American Mathematical Society Surveys and Monographs, Vol. 122, AmericanMathematical Society, Providence, RI, 2005.

    MATH  Google Scholar 

  7. M. Petkovšek, H. S. Wilf and D. Zeilberger, A = B, A K Peters, Wellesley, MA, 1996.

    MATH  Google Scholar 

  8. A. Regev, Asymptotic values for degrees associated with strips of Young diagrams, Advances in Mathematics 41 (1981), 115–136.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Regev, Young-derived sequences of Sn-characters, Advances in Mathematics 106 (1994), 169–197.

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Sturmfels, On vector partition functions, Journal of Combinatorial Theory. Series A 72 (1995), 302–309.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Berele.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berele, A., Catoiu, S. Asymptotic behavior of S n degrees associated with rational functions. Isr. J. Math. 208, 351–372 (2015). https://doi.org/10.1007/s11856-015-1202-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-015-1202-8

Keywords

Navigation