Skip to main content
Log in

Hypercyclic operators, Gauss measures and Polish dynamical systems

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this work we consider hypercyclic operators as a special case of Polish dynamical systems. In the first section we analyze a construction due to Bayart and Grivaux of a hypercyclic operator which preserves a Gaussian measure, and derive a description of the maximal spectral type of the Koopman operator associated to the corresponding measure preserving dynamical system. We then use this information to show the existence of a mildly but not strongly mixing hypercyclic operator on Hilbert space. In the last two sections we study hypercyclic and frequently hypercyclic operators which, as Polish dynamical systems, are M-systems, E-systems, and syndetically transitive systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Akin and E. Glasner, Residual properties and almost equicontinuity, Journal d’Analize Mathmátique 84 (2001), 243–286.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Badea and S. Grivaux, Unimodular eigenvalues, uniformly distributed sequences and linear dynamics, Advances in Mathematics 211 (2007), 766–793.

    Article  MATH  MathSciNet  Google Scholar 

  3. F. Bayart and S. Grivaux, Invariant Gaussian measures for operators on Banach spaces and linear dynamics, Proceedings London Mathematical Society (3) 94 (2007), 181–210.

    Article  MATH  MathSciNet  Google Scholar 

  4. F. Bayart and E. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Mathematics 179, Cambridge University Press, Cambridge, 2009.

    Book  MATH  Google Scholar 

  5. F. Bayart and E. Matheron, Mixing operators and small subsets of the circle, arXiv:1112.1289.

  6. I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer-Verlag, New York, 1982.

    Book  MATH  Google Scholar 

  7. T. Eisner and S. Grivaux, Hilbertian Jamison sequences and rigid dynamical systems, Journal of Functional Analysis 261 (2010), 2013–2052.

    Article  MathSciNet  Google Scholar 

  8. H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, N.J., 1981.

    Book  MATH  Google Scholar 

  9. H. Furstenberg and B. Weiss, The finite multipliers of infinite transformation, Lecture Notes in Mathematics 688, Springer-Verlag, Berlin, 1978, pp. 127–132.

    Google Scholar 

  10. E. Glasner, Ergodic Theory via Joinings, Math. Surveys and Monographs Mathematical 101, American Mathematicsl Society, Providence, RI, 2003.

    MATH  Google Scholar 

  11. E. Glasner and B. Weiss, Sensitive dependence on initial conditions, Nonlinearity 6 (1993), 1067–1075. (A revised version is posted in http://www.math.tau.ac.il/~glasner)

    Article  MATH  MathSciNet  Google Scholar 

  12. E. Glasner and B. Weiss, Locally equicontinuous dynamical systems, Colloquium Mathematicum 84/85 (2000), part 2, 345–361. (A revised version is posted in http://www.math.tau.ac.il/~glasner)

    MathSciNet  Google Scholar 

  13. E. Glasner and B. Weiss, On the interplay between measurable and topological dynamics, in Handbook of Dynamical Systems, Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 597–648.

    Google Scholar 

  14. S. Grivaux, A new class of frequently hypercyclic operators, Indiana University Mathematics Journal 60 (2011), 1177–1201.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Grivaux, Non-recurrence sets for weakly mixing linear dynamical systems, 2012, arXiv:1202.3114.

  16. K.-G. Grosse-Erdmann and A. Peris, Frequently dense orbits, Comptes Rendus de l’Académie des Sciences. Paris 341 (2005), 123–128.

    MATH  MathSciNet  Google Scholar 

  17. B. Host, J.-F. Méla and F. Parreau, Analyse harmonique des measures, Astérisque 135–136, Soc. Math. de France, (1968).

  18. S. Janson, Gaussian Hilbert Spaces, Cambridge Tracts in Mathematics 129, Cambridge University Press, Cambridge, 1997.

    Book  MATH  Google Scholar 

  19. A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics 156, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  20. M. Lemańczyk, F. Parreau and J.-P. Thouvenot, Gaussian automorphisms whose ergodic self-joinings are Gaussian, Fundamenta Mathematicae 164 (2000), 253–293.

    MATH  MathSciNet  Google Scholar 

  21. J. C. Oxtoby, On two theorems of Parthasarathy and Kakutani concerning the shift transformation, in Ergodic Theory (Proc. Internat. Sympos., Tulane Univ., New Orleans, La., 1961), Academic Press, New York, 1963, pp. 203–215.

    Google Scholar 

  22. M. Queffelec, Substitution Dynamical Systems, Lecture Notes in Mathematics 1294, Springer-Verlag, Berlin, 1987.

    MATH  Google Scholar 

  23. S. Shkarin, On the spectrum of frequently hypercyclic operators, Proceedings of the American Mathematical Society 137 (2009), 123–134.

    Article  MATH  MathSciNet  Google Scholar 

  24. B. Weiss, A survey of generic dynamics, in Descriptive Set Theory and Dynamical Systems, Cambridge University Press, 2000, Ramat Aviv, pp. 273–291.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiftach Dayan.

Additional information

This research was supported by a grant of ISF 668/13

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dayan, Y., Glasner, E. Hypercyclic operators, Gauss measures and Polish dynamical systems. Isr. J. Math. 208, 79–99 (2015). https://doi.org/10.1007/s11856-015-1194-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-015-1194-4

Keywords

Navigation