Abstract
Left invariant Finsler metrics on Lie groups provide an important class of Finsler manifolds. In this paper, we prove several properties of the Ricci curvatures of such spaces. For example, if all the Ricci curvatures are nonnegative, then the underlying Lie group must be unimodular. If the Lie group is noncommutative and nilpotent, then there must be three directions whose Ricci curvature is positive, negative and zero, respectively. This result gives a negative answer to a question of S.-S. Chern.
Similar content being viewed by others
References
D. Bao, On two curvature-driven problems in Riemann-Finsler geometry, in Finsler Geometry, Sapporo 2005-in Memory of Makoto Matsumoto, Advanced Studies in Pure Mathematics, Vol. 48, Mathematical Society of Japan, Tokyo, 2007, pp. 19–71.
D. Bao, S.-S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, Graduate Texts in Mathematics, Vol. 200, Springer, New York, 2000.
A. L. Besse, Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 10, Springer-Verlag, Berlin, 1987.
S.-S. Chern and Z. Shen, Riemann-Finsler Geometry Nankai Tracts in Mathematics, Vol. 6, World Scientific Publishing, Hackensack, NJ, 2005.
K. Grove, H. Karcher and E. Ruh, Jacobi fields and Finsler metrics on compact Lie groups with an application to differentiable pinching problems, Mathematische Annalen 211 (1974), 7–21.
Z. Hu and S. Deng, Curvatures of homogeneous Randers spaces, Advances in Mathematics 240 (2013), 194–226.
L. Huang, Einstein Finsler metrics on S 3 with Nonconstant Flag Curvature, Houston Journal of Mathematics 37 (2011), 1071–1086.
D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, Journal of Geometry and Physics 57 (2007), 1421–1433.
J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Mathematics 21 (1976), 293–329.
J. A. Wolf, Curvature in nilpotent Lie groups, Proceedings of the American Mathematical Society 15 (1964), 271–274.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported by the National Natural Science Foundation of China 11301283.
Rights and permissions
About this article
Cite this article
Huang, L. Ricci curvatures of left invariant Finsler metrics on Lie groups. Isr. J. Math. 207, 783–792 (2015). https://doi.org/10.1007/s11856-015-1161-0
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11856-015-1161-0