Skip to main content
Log in

Ricci curvatures of left invariant Finsler metrics on Lie groups

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Left invariant Finsler metrics on Lie groups provide an important class of Finsler manifolds. In this paper, we prove several properties of the Ricci curvatures of such spaces. For example, if all the Ricci curvatures are nonnegative, then the underlying Lie group must be unimodular. If the Lie group is noncommutative and nilpotent, then there must be three directions whose Ricci curvature is positive, negative and zero, respectively. This result gives a negative answer to a question of S.-S. Chern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bao, On two curvature-driven problems in Riemann-Finsler geometry, in Finsler Geometry, Sapporo 2005-in Memory of Makoto Matsumoto, Advanced Studies in Pure Mathematics, Vol. 48, Mathematical Society of Japan, Tokyo, 2007, pp. 19–71.

    Google Scholar 

  2. D. Bao, S.-S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, Graduate Texts in Mathematics, Vol. 200, Springer, New York, 2000.

    MATH  Google Scholar 

  3. A. L. Besse, Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 10, Springer-Verlag, Berlin, 1987.

    Book  MATH  Google Scholar 

  4. S.-S. Chern and Z. Shen, Riemann-Finsler Geometry Nankai Tracts in Mathematics, Vol. 6, World Scientific Publishing, Hackensack, NJ, 2005.

    MATH  Google Scholar 

  5. K. Grove, H. Karcher and E. Ruh, Jacobi fields and Finsler metrics on compact Lie groups with an application to differentiable pinching problems, Mathematische Annalen 211 (1974), 7–21.

    Article  MATH  MathSciNet  Google Scholar 

  6. Z. Hu and S. Deng, Curvatures of homogeneous Randers spaces, Advances in Mathematics 240 (2013), 194–226.

    Article  MATH  MathSciNet  Google Scholar 

  7. L. Huang, Einstein Finsler metrics on S 3 with Nonconstant Flag Curvature, Houston Journal of Mathematics 37 (2011), 1071–1086.

    MATH  MathSciNet  Google Scholar 

  8. D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, Journal of Geometry and Physics 57 (2007), 1421–1433.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Mathematics 21 (1976), 293–329.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. A. Wolf, Curvature in nilpotent Lie groups, Proceedings of the American Mathematical Society 15 (1964), 271–274.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libing Huang.

Additional information

This work is supported by the National Natural Science Foundation of China 11301283.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L. Ricci curvatures of left invariant Finsler metrics on Lie groups. Isr. J. Math. 207, 783–792 (2015). https://doi.org/10.1007/s11856-015-1161-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-015-1161-0

Keywords

Navigation