Skip to main content
Log in

Bias of group generators in the solvable case

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Babai and Pak demonstrated a weakness in the product replacement algorithm, a widely used heuristic algorithm intended to rapidly generate nearly uniformly distributed random elements in a finite group G. It was an open question whether the same weakness can be exhibited if one considers only finite solvable groups. We give an affirmative solution to this problem. We consider the distribution of the first component in a k-tuple chosen uniformly in the set of all the k-tuples generating G and construct an infinite sequence of finite solvable groups G for which this distribution turns out to be very far from uniform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aschbacher and R. M. Guralnick, Some applications of the first cohomology group, Journal of Algebra 90 (1984), 446–460.

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Babai and I. Pak, Strong bias of group generators: an obstacle to the “product replacement algorithm”, in Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, CA, 2000), ACM, New York, 2000, pp. 627–635.

    Google Scholar 

  3. F. Celler, C. R. Leedham-Green, S. Murray, A. Niemeyer and E. A. O’Brien, Generating random elements of a finite group, Communications in Algebra 23 (1995), 4931–4948.

    Article  MATH  MathSciNet  Google Scholar 

  4. W. Gaschütz, Die Eulersche Funktion endlicher auflösbarer Gruppen, Illinois Journal of Mathematics 3 (1959), 469–476.

    MATH  MathSciNet  Google Scholar 

  5. P. Hall, The Eulerian functions of a group, Quarterly Journal of Mathematics 7 (1936), 134–151.

    Article  Google Scholar 

  6. W. M. Kantor and A. Lubotzky, The probability of generating a finite classical group, Geometriae Dedicata 36 (1990), 67–87.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Lucchini, The X-Dirichlet polynomial of a finite group, Journal of Group Theory 8 (2005), 171–188.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Lucchini, F. Menegazzo and M. Morigi, On the probability of generating prosoluble groups, Israel Journal of Mathematics 155 (2006), 93–115.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Mann, Positively finitely generated groups, Forum Mathematicum 8 (1996), 429–459.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Morigi, On the probability of generating free prosoluble groups of small rank, Israel Journal of Mathematics 155 (2006), 117–123.

    Article  MATH  MathSciNet  Google Scholar 

  11. I. Pak, What do we know about the product replacement algorithm?, in Groups and Computation, III (Colombus, OH, 1999), Ohio State University Mathematical Research Institute Publications, Vol. 8, de Gruyter, Berlin, 2001, pp. 301–347.

    Google Scholar 

  12. M. Pintér, The existence of an inverse limit of an inverse system of measure spaces-a purely measurable case, Acta Mathematica Hungarica 126 (2010), 65–77.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Ross, A First Course in Probability, Second edition, Macmillan Co., New York; Collier Macmillan Ltd., London, 1984.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora Crestani.

Additional information

To Federico Menegazzo, on the occasion of his 70th birthday, with gratitude

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crestani, E., Lucchini, A. Bias of group generators in the solvable case. Isr. J. Math. 207, 739–761 (2015). https://doi.org/10.1007/s11856-015-1159-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-015-1159-7

Keywords

Navigation