Israel Journal of Mathematics

, Volume 203, Supplement 1, pp 1–11 | Cite as

On the mathematical contributions of Joram Lindenstrauss

Article
  • 126 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. A. Akemann and J. Anderson, Lyapunov theorems for operator algebras, Memoirs of the American Mathematical Society 94 (1991).Google Scholar
  2. [2]
    D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Annals of Mathematics 88 (1968), 35–46.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    K. Ball, Markov chains, Riesz transforms and Lipschitz maps, Geometric and Functional Analysis 2 (1992), 137–172.CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    K. Ball, The Ribe programme, Séminaire Bourbaki, Vol. 2011/2012, Exposés 1043–1058, Astérisque 352 (2013), Exp. No. 1047, viii, 147–159.Google Scholar
  5. [5]
    S. Bates, W. B. Johnson, J. Lindenstrauss, D. Preiss and G. Schechtman, Affine approximation of Lipschitz functions and nonlinear quotients, Geometric and Functional Analysis 9 (1999), 1092–1127.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis. Vol. 1, American Mathematical Society Colloquium Publications, Vol. 48, American Mathematical Society, Providence, RI, 2000.Google Scholar
  7. [7]
    J. Bourgain, On Lipschitz embedding of finite metric spaces in Hilbert space, Israel Journal of Mathematics 52 (1985), 46–52.CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    J. Bourgain, P. G. Casazza, J. Lindenstrauss and L. Tzafriri, Banach spaces with a unique unconditional basis, up to permutation, Memoirs of the American Mathematical Society 54 (1985).Google Scholar
  9. [9]
    J. Bourgain and J. Lindenstrauss, Distribution of points on spheres and approximation by zonotopes, Israel Journal of Mathematics 64 (1988), 25–31.CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    J. Bourgain, J. Lindenstrauss and V. Milman, Approximation of zonoids by zonotopes, Acta Mathematica 162 (1989), 73–141.CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    A. Dvoretzky, Some results on convex bodies and Banach spaces, in Proceedings of International Symposium on Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, pp. 123–160.Google Scholar
  12. [12]
    P. Enflo, On the nonexistence of uniform homeomorphisms between L p -spaces, Arkiv för Matematik 8 (1969), 103–105.CrossRefMathSciNetGoogle Scholar
  13. [13]
    P. Enflo, J. Lindenstrauss and G. Pisier, On the “three space problem”, Mathematica Scandinavica 36 (1975), 199–210.MATHMathSciNetGoogle Scholar
  14. [14]
    T. Figiel, J. Lindenstrauss and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Mathematica 139 (1977), 53–94.CrossRefMATHMathSciNetGoogle Scholar
  15. [15]
    E. Glasner and B. Weiss, Kazhdan’s property T and the geometry of the collection of invariant measures, Geometric and Functional Analysis 7 (1997), 917–935.CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Boletim da Sociedade de Matemática de São Paulo 8 (1953), 1–79.MathSciNetGoogle Scholar
  17. [17]
    W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, in Conference in Modern Analysis and Probability (New Haven, Conn., 1982), Contemporary Mathematics, Vol. 26, American Mathematical Society, Providence, RI, 1984, pp. 189–206.Google Scholar
  18. [18]
    W. B. Johnson and J. Lindenstrauss (eds.), Handbook of the Geometry of Banach Spaces. Vol. I, North-Holland Publishing Co., Amsterdam, 2001.Google Scholar
  19. [19]
    W. B. Johnson and J. Lindenstrauss (eds.), Handbook of the Geometry of Banach Spaces. Vol. 2, North-Holland, Amsterdam, 2003.Google Scholar
  20. [20]
    W. B. Johnson, J. Lindenstrauss and G. Schechtman, Banach spaces determined by their uniform structures, Geometric and Functional Analysis 6 (1996), 430–470.CrossRefMATHMathSciNetGoogle Scholar
  21. [21]
    N. J. Kalton, The complemented subspace problem revisited, Studia Mathematica 188 (2008), 223–257.CrossRefMATHMathSciNetGoogle Scholar
  22. [22]
    N. J. Kalton and N. T. Peck, Twisted sums of sequence spaces and the three space problem, Transactions of the American Mathematical Society 255 (1979), 1–30.CrossRefMATHMathSciNetGoogle Scholar
  23. [23]
    A. J. Lazar and J. Lindenstrauss, On Banach spaces whose duals are L 1 spaces, Israel Journal of Mathematics 4 (1966), 205–207.CrossRefMATHMathSciNetGoogle Scholar
  24. [24]
    A. J. Lazar and J. Lindenstrauss, Banach spaces whose duals are L 1 spaces and their representing matrices, Acta Mathematica 126 (1971), 165–193.CrossRefMATHMathSciNetGoogle Scholar
  25. [25]
    J. Lindenstrauss, Extension of compact operators, Memoirs of the American Mathematical Society 48 (1964).Google Scholar
  26. [26]
    J. Lindenstrauss, On nonlinear projections in Banach spaces, Michigan Mathematical Journal 11 (1964), 263–287.CrossRefMATHMathSciNetGoogle Scholar
  27. [27]
    J. Lindenstrauss, A short proof of Liapounoff’s convexity theorem, Journal of Mathematics and Mechanics 15 (1966), 971–972.MATHMathSciNetGoogle Scholar
  28. [28]
    J. Lindenstrauss, G. Olsen and Y. Sternfeld, The Poulsen simplex, Université de Grenoble. Annales de l’Institut Fourier 28 (1978), vi, 91-114.Google Scholar
  29. [29]
    J. Lindenstrauss and A. PeŁczyński, Absolutely summing operators in L p -spaces and their applications, Studia Mathematica 29 (1968), 275–326.MATHMathSciNetGoogle Scholar
  30. [30]
    J. Lindenstrauss and D. Preiss, On Fréchet differentiability of Lipschitz maps between Banach spaces, Annals of Mathematics 157 (2003), 257–288.CrossRefMATHMathSciNetGoogle Scholar
  31. [31]
    J. Lindenstrauss, D. Preiss and J. Tišer, Fréchet Differentiability of Lipschitz Functions and porous sets in Banach spaces, Annals of Mathematics Studies, Vol. 179, Princeton University Press, Princeton, NJ, 2012.Google Scholar
  32. [32]
    J. Lindenstrauss and H. P. Rosenthal, The \(\mathcal{L}_p\) spaces, Israel Journal of Mathematics 7 (1969), 325–349.CrossRefMATHMathSciNetGoogle Scholar
  33. [33]
    J. Lindenstrauss and L. Tzafriri, On the complemented subspaces problem, Israel Journal of Mathematics 9 (1971), 263–269.CrossRefMATHMathSciNetGoogle Scholar
  34. [34]
    J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I. Sequence spaces,, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92, Springer-Verlag, Berlin-New York, 1977.Google Scholar
  35. [35]
    J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II. Function Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 97, Springer-Verlag, Berlin-New York, 1979.Google Scholar
  36. [36]
    M. B. Marcus and G. Pisier, Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes, Acta Mathematica 152 (1984), 245–301.CrossRefMATHMathSciNetGoogle Scholar
  37. [37]
    B. Maurey, Théor`emes de factorisation pour les opérateurs linéaires `a valeurs dans les espaces L p, Astérisque, Vol. 11, Société Mathématique de France, Paris, 1974Google Scholar
  38. [38]
    A. Naor, An introduction to the Ribe program, Japanese Journal of Mathematics 7 (2012), 167–233.CrossRefMATHMathSciNetGoogle Scholar
  39. [39]
    A. Naor, Y. Peres, O. Schrammand S. Sheffield, Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces, Duke Mathematical Journal 134 (2006), 165–197.CrossRefMATHMathSciNetGoogle Scholar
  40. [40]
    E. T. Poulsen, A simplex with dense extreme points, Université de Grenoble. Annales de l’Institut Fourier 11 (1961), 83–87, XIV.CrossRefMATHMathSciNetGoogle Scholar
  41. [41]
    W. Rudin, Functional Analysis, second edition, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991.MATHGoogle Scholar
  42. [42]
    G. Schechtman, More on embedding subspaces of L p in l rn, Compositio Mathematica 61 (1987), 159–169.MATHMathSciNetGoogle Scholar
  43. [43]
    M. Talagrand, Embedding subspaces of L 1 into l 1N, Proceedings of the American Mathematical Society 108 (1990), 363–369.MATHMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2014

Authors and Affiliations

  1. 1.Courant InstituteNew York UniversityNew YorkUSA
  2. 2.Department of MathematicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations