Israel Journal of Mathematics

, Volume 202, Issue 1, pp 275–293 | Cite as

Hasse principle and weak approximation for multinorm equations



In this note, we are interested in local-global principles for multinorm equations \(\prod\nolimits_{i = 1}^n {{N_{{L_i}/k}}({z_i}} ) = a\) where k is a global field, L i /k are finite separable field extensions and ak*.

In particular, we prove a result relating the Hasse principle and weak approximation for this equation to the Hasse principle and weak approximation for some classical norm equation N F/k (w) = a where \(F: = \bigcap\nolimits_{i = 1}^n {{L_i}} \). It provides a proof of a “weak approximation” analogue of a recent conjecture by Pollio and Rapinchuk about the multinorm principle. We also provide a counterexample to the original conjecture concerning the Hasse principle.


Exact Sequence Galois Extension Weak Approximation Permutation Module Algebraic Tori 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [CT1]
    J.-L. Colliot-Thélène, L’arithmétique des variétés rationnelles, Annales de la Faculté des Sciences de Toulouse. Mathématiques 3 (1992), 295–336.CrossRefGoogle Scholar
  2. [CT2]
    J.-L. Colliot-Thélène, Groupe de Brauer non ramifié d’espaces homogènes de tores, Journal de Théorie des Nombres de Bordeaux, to appear. arXiv:1210.3644.Google Scholar
  3. [H]
    W. Hürlimann, On algebraic tori of norm type, Commentarii Mathematici Helvetici 59 (1984), 539–549.MathSciNetCrossRefMATHGoogle Scholar
  4. [Ka]
    G. Karpilovsky, The Schur Multiplier, London Mathematical Society Monographs, Vol. 2, Oxford University Press, New York, 1987.MATHGoogle Scholar
  5. [Ku]
    B. È. Kunyavskiĭ, Arithmetic properties of three-dimensional algebraic tori. Integral lattices and finite linear groups, Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta imeni V. A. Steklova Akademii Nauk SSSR (LOMI) 116 (1982), 102–107, 163.MathSciNetGoogle Scholar
  6. [NSW]
    J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of Number Fields, second edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 323, Springer-Verlag, Berlin, 2008.CrossRefMATHGoogle Scholar
  7. [PlR]
    V. Platonov and A. S. Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, Vol. 139, Academic Press, Boston, MA, 1994.CrossRefMATHGoogle Scholar
  8. [PR]
    T. Pollio and A. S. Rapinchuk, The multinorm principle for linearly disjoint Galois extensions, Journal of Number Theory 133 (2013), 802–821.MathSciNetCrossRefMATHGoogle Scholar
  9. [PrR]
    G. Prasad and A. S. Rapinchuk, Local-global principles for embedding of fields with involution into simple algebras with involution, Commentarii Mathematici Helvetici 85 (2010) 583–645.MathSciNetCrossRefMATHGoogle Scholar
  10. [S]
    J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, Journal für die Reine und Angewandte Mathematik 327 (1981), 12–80.MathSciNetMATHGoogle Scholar
  11. [V]
    V. E. Voskresenskiĭ, Algebraicheskie Tory, Izdat Nauka, Moscow, 1977. (Russian)Google Scholar
  12. [W1]
    D. Wei, On the equation N K/k(Ξ) = P(t), preprint (2012), arXiv:1202.4115v2.Google Scholar
  13. [W2]
    D. Wei, The unramified Brauer group of norm one tori, preprint (2012), arXiv:1202.4714v2.Google Scholar

Copyright information

© Hebrew University of Jerusalem 2014

Authors and Affiliations

  1. 1.Institut de Mathématiques de JussieuUniversité Pierre et Marie CurieParis Cedex 05France
  2. 2.Academy of Mathematics and System ScienceCASBeijingP. R. China
  3. 3.Mathematisches Institut der Universität MünchenMünchenGermany

Personalised recommendations