Israel Journal of Mathematics

, Volume 199, Issue 2, pp 773–790 | Cite as

On a class of weakly Einstein Finsler metrics

Article

Abstract

In this paper we study a special class of Finsler metrics—m-Kropina metrics which are defined by a Riemannian metric and a 1-form. We prove that a weakly Einstein m-Kropina metric must be Einsteinian. Further, we characterize Einstein m-Kropina metrics in very simple conditions under a suitable deformation, and obtain the local structures of m-Kropina metrics which are of constant flag curvature and locally projectively flat with constant flag curvature respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Bao and C. Robles, Ricci and flag curvatures in Finsler geometry, in A sampler of Reimann-Finsler Geometry, Mathematical Sciences Research Institute Publications, Vol. 50, Cambridge University Press, Cambridge, 2005, pp. 197–259.Google Scholar
  2. [2]
    B. Chen, Z. Shen and L. Zhao, On a calss of Ricci flat Finsler metrics in Finsler geometry, Journal of Geometry and Physics, preprint.Google Scholar
  3. [3]
    X. Cheng, X. Mo and Z. Shen, On the flag curvature of Finsler metrics of scalar curvature, Journal of the Londonon Mathematical Society 68 (2003), 762–780.CrossRefMathSciNetGoogle Scholar
  4. [4]
    X. Cheng, Z. Shen and Y. Tian, A class of Einstein (α, β)-metrics, Isreal Journal of Mathematics 192 (2012), 221–249.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    V. K. Kropina, On projective two-dimensional Finsler spaces with a special metric, Trudy Seminara po Vektornomu i Tenzornomu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike 11 (1961), 277–292.(in Russian)MATHMathSciNetGoogle Scholar
  6. [6]
    M. Rafie-Rad, Time-optimal solutions of parallel navigation and Finsler geodesics, Nonlinear Analysis. Real World Applications 11 (2010), 3809–3814.CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    Z. Shen, On projectively flat (α, β)-metrics, Canadian Mathematical Bulletin 52 (2009), 132–144.CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    Z. Shen and H. Xing, On Randers metrics of isotropic S-curvature, Acta Mathematica Sinica, English Series 24 (2008), 789–796.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    Z. Shen and G. Yang, On square metrics of scalar flag curvature, preprint.Google Scholar
  10. [10]
    Z. Shen and G. C. Yildirim, A characterization of Randers metrics of scalar flag curvature, in Survey in Geometric Analysis and Relativity, Advanced Lectures in Mathematics, Vol. 23, International Press, Somerville, MA 2012, pp. 345–358.Google Scholar
  11. [11]
    Q. Xia, On Kropina metrics of weakly isotropic flag curvature, preprint.Google Scholar
  12. [12]
    T. Yajima and H. Nagahama, Zermelos condition and seismic ray path, Nonlinear Analysis. Real World Applications 8 (2007), 130–135.CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    G. Yang, On a class of two-dimensional singular Douglas and projectively flat Finsler metrics, preprint.Google Scholar
  14. [14]
    G. Yang, On a class of singular Douglas and projectively flat Finsler metrics, preprint.Google Scholar
  15. [15]
    G. Yang, On a class of singular projectively flat Finsler metrics with constant flag curvature, preprint.Google Scholar
  16. [16]
    R. Yoshikawa and K. Okubo, Kropina spaces of constant curvature II, arXiv: math/1110.5128v1 [math.DG] 24 Oct 2011.Google Scholar
  17. [17]
    X. Zhang and Y. Shen, On Einstein Kropina metrics, Deffernetial Geometry and its Application, to appear.Google Scholar

Copyright information

© Hebrew University Magnes Press 2014

Authors and Affiliations

  1. 1.Department of Mathematical SciencesIndiana University-Purdue University Indianapolis (IUPUI)IndianapolisUSA
  2. 2.Department of MathematicsSichuan UniversityChengduP. R. China

Personalised recommendations