Skip to main content
Log in

On the multiple Borsuk numbers of sets

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The Borsuk number of a set S of diameter d > 0 in Euclidean n-space is the smallest value of m such that S can be partitioned into m sets of diameters less than d. Our aim is to generalize this notion in the following way: The k -fold Borsuk number of such a set S is the smallest value of m such that there is a k-fold cover of S with m sets of diameters less than d. In this paper we characterize the k-fold Borsuk numbers of sets in the Euclidean plane, give bounds for those of centrally symmetric sets, smooth bodies and convex bodies of constant width, and examine them for finite point sets in the Euclidean 3-space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Boltyanskii, The problem on illuminating the boundary of a convex body, Izv. Mold. Filiala AN SSSR 76 (1960), 77–84.

    Google Scholar 

  2. V. G. Boltyanskii and I. C. Gohberg, The Decomposition of Figures into Smaller Parts, translated from Russian, The University of Chicago Press, Chicago, 1980.

    Google Scholar 

  3. V. Boltyanskii, H. Martini and P. S. Soltan, Excursions into Combinatorial Geometry, Springer-Verlag, Berlin, 1997.

    Book  Google Scholar 

  4. T. Bonnesen, and W. Fenchel, Theorie der Konvexen Körper, Chelsea, New York, 1948, pp. 130–135.

    Google Scholar 

  5. K. Borsuk, Drei Sätze über die n-dimensionale eukildische Sphäre, Fundamental Mathematics 20 (1933), 177–190.

    Google Scholar 

  6. V. L. Dol’nikov, Some properties of graphs of diameters, Discrete and Computational Geometry 24 (2000), 293–299.

    Article  MATH  MathSciNet  Google Scholar 

  7. W. J. Firey, Isoperimetric ratios of Reuleaux polygons, Pacific Journal of Mathematics 10 (1960), 823–829.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Gale, Neighboring vertices on a convex polyhedron, in Linear Inequalities and Related Systems (H. W. Kuhn and A. W. Tucker, eds.), Annals of Mathematics Studies, Vol. 38, Princeton University Press, Princeton, NJ, 1956, pp. 255–264.

    Google Scholar 

  9. B. Grünbaum, A proof of Vázsonyi’s conjecture, Bulletin of the Research Council of Israel. Section A 6 (1956), 77–78.

    Google Scholar 

  10. B. Grünbaum, Borsuk’s problem and related questions, in Convexity, Proceedings of the Seventh Symposium in Pure Mathematics of the American Mathematical Society, Seattle, WA, 1961, pp. 271–284.

    Google Scholar 

  11. H. Hadwiger, Überdeckung einer Menge durch Mengen kleineren Durchmessers, Commentarii Mathematici Helvetici 18 (1945), 73–75.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Hadwiger, Mitteilung betreffend meine Note: Überdeckung einer Menge durch Mengen kleineren Durchmessers, Commentarii Mathematici Helvetici 19 (1946), 72–73.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Heppes, Beweis einer Vermutung von A. Vázsonyi, Acta Mathematica Academiae Scientiarum Hungaricae 7 (1956), 463–466.

    Article  MathSciNet  Google Scholar 

  14. A. Heppes and P. Révész, Zum Borsukschen Zerteilungsproblem, Acta Mathematica Academiae Scientiarum Hungaricae 7 (1956), 159–162.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Heppes and W. Kuperberg, Cylindrical partitions of convex bodies, in Combinatorial and Computation Geometry, (J. E. Goodman et al., eds.), Mathematical Sciences Research Institute Publications, Vol. 52, Cambridge University Press, Cambridge, 2005, pp. 399–407.

    Google Scholar 

  16. T. R. Jensen and F. B. Shepherd, Note on a conjecture of Toft, Combinatorica 15 (1995), 373–377.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Kahn, and G. Kalai, A counterexample to Borsuk’s conjecture, Bulletin of the American Mathematical Society 29 (1993), 60–62.

    Article  MATH  MathSciNet  Google Scholar 

  18. Y. S. Kupitz, H. Martini and M. A. Perles, Ball polytopes and the Vázsonyi problem, Acta Mathematica Hungarica 126 (2010), 99–163.

    Article  MATH  MathSciNet  Google Scholar 

  19. W. Lin, D. D.-F. Liu, and X. Zhu, Multi-coloring the Mycielskians of graphs, Journal of Graph Theory 63 (2010), 311–323.

    MATH  MathSciNet  Google Scholar 

  20. W. Lin, J. Wu, P. C. B. Lam and G. Gu, Several parameters of generalized Mycielskians, Discrete Applied Mathematics 154 (2006), 1173–1182.

    Article  MATH  MathSciNet  Google Scholar 

  21. A. M. Raigorodskii, On a bound in Borsuk’s problem, Russian Mathematical Surveys 54(N2) (1999), 453–454.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. M. Raigorodskii, Borsuk’s problem for (0, 1)-polytopes and cross-polytopes, Doklady Mathematics 65 (2002), 413–416, and Doklady Akademii Nauk 384(5) (2002), 593–597.

    MATH  Google Scholar 

  23. A. M. Raigorodskii, The Borsuk and Grünbaum problems for lattice polytopes, Izvestiya: Mathematics 69(N3) (2005), 513–537.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. M. Raigorodskii, Around Borsuk’s hypothesis, Journal of Mathematical Sciences 154 (2008), 604–623, translation from Sovrem Mat., Fundam. Napravl. 23 (2007), 147–164.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. S. Riesling, Borsuk’s problem in three-dimensional spaces of constant curvature, Ukr. Geom. Sb. 11 (1971), 78–83.

    Google Scholar 

  26. C. A. Rogers, Symmetrical sets of constant width and their partitions, Mathematika 18 (1971), 105–111.

    Article  MATH  MathSciNet  Google Scholar 

  27. G. T. Sallee, Reuleaux polytopes, Mathematika 17 (1970), 315–328.

    Article  MATH  MathSciNet  Google Scholar 

  28. S. Stahl, n-tuple colorings and associated graphs, The Journal of Combinatorial Theory 20 (1976), 185–203.

    Article  MATH  MathSciNet  Google Scholar 

  29. S. Sutorik, Instability of multicoloring and multiclique sequence, MSc. thesis, University of Colorado at Denver, Denver, CO, 1995.

    Google Scholar 

  30. K. J. Swanepoel, A new proof of Vázsonyi’s conjecture, The Journal of Combinatorial Theory Series A 115 (2008), 888–892.

    Article  MATH  MathSciNet  Google Scholar 

  31. C. Tardif, Fractional chromatic numbers of cones over graphs, The Journal of Graph Theory 38 (2001), 87–94.

    Article  MATH  MathSciNet  Google Scholar 

  32. B. Toft, Problem 11, in Recent Advances in Graph Theory, Academia Praha, Prague, 1975, pp. 543–544.

    Google Scholar 

  33. G. M. Ziegler, Coloring Hamming graphs, optimal binary codes, and the 0/1-Borsuk problem in low dimensions, in Computational Discrete Mathematics, Lecture Notes in Computer Science, Vol. 2122, Springer, Berlin, 2001, pp. 159–171.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihály Hujter.

Additional information

Dedicated to Aladár Heppes on his 80th birthday

The support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences is gratefully acknowledged

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hujter, M., Lángi, Z. On the multiple Borsuk numbers of sets. Isr. J. Math. 199, 219–239 (2014). https://doi.org/10.1007/s11856-013-0048-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-013-0048-1

Keywords

Navigation