Skip to main content

Turán numbers for K s,t -free graphs: Topological obstructions and algebraic constructions

Abstract

We show that every hypersurface in ℝs × ℝs contains a large grid, i.e., the set of the form S × T, with S, T ⊂ ℝs. We use this to deduce that the known constructions of extremal K 2,2-free and K 3,3-free graphs cannot be generalized to a similar construction of K s,s -free graphs for any s ≥ 4. We also give new constructions of extremal K s,t -free graphs for large t.

This is a preview of subscription content, access via your institution.

References

  1. [ARS99]

    N. Alon, L. Rónyai and T. Szabó, Norm-graphs: variations and applications, Journal of Combinatorial Theory. Series B 76 (1999), 280–290; http://www.tau.ac.il/~nogaa/PDFS/norm7.pdf.

    MathSciNet  Article  MATH  Google Scholar 

  2. [Ben66]

    C. T. Benson, Minimal regular graphs of girths eight and twelve, Canadian Journal of Mathematics 18 (1996), 1091–1094.

    MathSciNet  Article  Google Scholar 

  3. [Ber75]

    D. N. Bernstein, The number of roots of a system of equations, Funktsional’nyĭ Analiz i ego Priloženiya 9 (1975), 1–4; http://mi.mathnet.ru/faa2258. English translation: Functional Analysis and its Applications 9 (1975), 183–185.

    Google Scholar 

  4. [Bol59]

    V. G. Boltjanskiĭ, Mappings of compacta into Euclidean spaces, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 23 (1959), 871–892. http://mi.mathnet.ru/izv3818.

    MathSciNet  Google Scholar 

  5. [BPar]

    S. Ball and V. Pepe, Asymptotic improvements to the lower bound of certain bipartite Túran numbers, Combinatorics, Probability and Computing 21 (2012), 323–329. http://www-ma4.upc.es/~simeon/nokayfivefive.pdf.

    MathSciNet  Article  MATH  Google Scholar 

  6. [Bro66]

    W. G. Brown, On graphs that do not contain a Thomsen graph, Canadian Mathematical Bulletin 9 (1966), 281–285.

    MathSciNet  Article  MATH  Google Scholar 

  7. [BS74]

    J. A. Bondy and M. Simonovits, Cycles of even length in graphs, Journal of Combinatorial Theory. Series B 16 (1974), 97–105.

    MathSciNet  Article  MATH  Google Scholar 

  8. [CLM76]

    F. R. Cohen, T. J. Lada and J. P. May, The Homology of Iterated Loop Spaces, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin, 1976.

    MATH  Google Scholar 

  9. [DL11]

    Z. Dvir and S. Lovett, Subspace evasive sets, STOC’ 12 Proceedings of the 44th symposium on Theory of Computing, 351–358. arXiv:1110.5696, October 2011.

  10. [ERS66]

    P. Erdős, A. Rényi and V. T. Sós, On a problem of graph theory, Studia Scientiarum Mathematicarum Hungarica 1 (1966), 215–235.

    MathSciNet  Google Scholar 

  11. [ES46]

    P. Erdős and A. H. Stone, On the structure of linear graphs, Bulletin of the American Mathematical Society 52 (1946), 1087–1091.

    MathSciNet  Article  Google Scholar 

  12. [FH88]

    E. Fadell and S. Husseini, An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems, Ergodic Theory and Dynamical Systems 8* (Charles Conley Memorial Issue) (1988), 73–85.

    MathSciNet  Article  MATH  Google Scholar 

  13. [Für96a]

    Z. Füredi, New asymptotics for bipartite Turán numbers, Journal of Combinatorial Theory. Series A 75 (1996), 141–144.

    MathSciNet  Article  MATH  Google Scholar 

  14. [Für96b]

    Z. Füredi, An upper bound on Zarankiewicz’ problem, Combinatorics, Probability and Computing 5 (1996), 29–33. http://www.math.uiuc.edu/~z-furedi/PUBS/furedi_k33.pdf.

    MathSciNet  Article  MATH  Google Scholar 

  15. [Han96]

    D. Handel, 2k-regular maps on smooth manifolds, Proceedings of the American Mathematical Society 124 (1996), 1609–1613.

    MathSciNet  Article  MATH  Google Scholar 

  16. [KRS96]

    J. Kollár, L. Rónyai and T. Szabó, Norm-graphs and bipartite Turán numbers, Combinatorica 16 (1996), 399–406.

    MathSciNet  Article  MATH  Google Scholar 

  17. [KST54]

    T. Kövari, V. T. Sós and P. Turán, On a problem of K. Zarankiewicz, Colloquium Mathematicum 3 (1954), 50–57.

    MATH  Google Scholar 

  18. [LW54]

    S. Lang and A. Weil, Number of points of varieties in finite fields, American Journal of Mathematics 76 (1954), 819–827.

    MathSciNet  Article  MATH  Google Scholar 

  19. [MM82]

    B. M. Mann and R. J. Milgram, On the Chern classes of the regular representations of some finite groups, Proceedings of the Edinburgh Mathematical Society 25 (1982), 259–268.

    MathSciNet  Article  MATH  Google Scholar 

  20. [Vol92]

    A. Yu. Volovikov, A Bourgin-Yang-type theorem for Z n p -action, Matematicheskiĭ Sbornik 183 (1992), 115–144; http://mi.mathnet.ru/msb1059. English translation: Sbornik. Mathematics 76 (1993), 361–387.

    MATH  Google Scholar 

  21. [Wen91]

    R. Wenger, Extremal graphs with no C 4s, C 6s, or C 10s, Journal of Combinatorial Theory. Series B 52 (1991), 113–116.

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pavle V. M. Blagojević.

Additional information

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant agreement no. 247029-SDModels. Also supported by the grant ON 174008 of the Serbian Ministry of Education and Science.

Research was supported by University of Cambridge and by Churchill College.

Supported by the Dynasty Foundation, the President’s of Russian Federation grant MD-352.2012.1, the Russian Foundation for Basic Research grants 10-01-00096 and 10-01-00139, the Federal Program “Scientific and scientific-pedagogical staff of innovative Russia” 2009–2013, and the Russian government project 11.G34.31.0053.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blagojević, P.V.M., Bukh, B. & Karasev, R. Turán numbers for K s,t -free graphs: Topological obstructions and algebraic constructions. Isr. J. Math. 197, 199–214 (2013). https://doi.org/10.1007/s11856-012-0184-z

Download citation

Keywords

  • Spectral Sequence
  • Generic Polynomial
  • Cohomology Ring
  • Euler Class
  • Algebraic Construction