Skip to main content
Log in

Coprime subdegrees for primitive permutation groups and completely reducible linear groups

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we answer a question of Gabriel Navarro about orbit sizes of a finite linear group H ⊆ GL(V) acting completely reducibly on a vector space V: if the H-orbits containing the vectors a and b have coprime lengths m and n, we prove that the H-orbit containing a + b has length mn. Such groups H are always reducible if n,m > 1. In fact, if H is an irreducible linear group, we show that, for every pair of non-zero vectors, their orbit lengths have a non-trivial common factor.

In the more general context of finite primitive permutation groups G, we show that coprime non-identity subdegrees are possible if and only if G is of O’Nan-Scott type AS, PA or TW. In a forthcoming paper we will show that, for a finite primitive permutation group, a set of pairwise coprime subdegrees has size at most 2. Finally, as an application of our results, we prove that a field has at most 2 finite extensions of pairwise coprime indices with the same normal closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Baddeley, Primitive permutation groups with a regular non-abelian normal subgroup, Proceedings of the London Mathematical Society 67 (1993), 547–595.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. W. Baddeley and C. E. Praeger, On classifying all full factorisations and multiplefactorisations of the finite almost simple groups, Journal of Algebra 204 (1998), 129–187.

    Article  MathSciNet  MATH  Google Scholar 

  3. K. S. Brown, Cohomology of Groups, Graduate Texts in Mathematics, Vol. 87, Springer-Verlag, 1982.

  4. W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, Journal of Symbolic Computation 24 (1997), 235–265.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. J. Cameron, Permutation Groups, London Mathematical Society Student Texts, Vol. 45, Cambridge University Press, Cambridge, 1999.

    Book  MATH  Google Scholar 

  6. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.

    MATH  Google Scholar 

  7. J. D. Dixon and B. Mortimer, Permutation Groups, Graduate Texts in Mathematics, Vol. 163, Springer-Verlag, New York, 1991.

    Google Scholar 

  8. S. Dolfi, R. Guralnick, C. E. Praeger and P. Spiga, On the maximal number of coprime subdegrees in finite primitive permutation groups, arXiv:1203.2728, preprint.

  9. E. Fisman and Z. Arad, A proof of Szep’s conjecture on nonsimplicity of certain finite groups, Journal of Algebra 108 (1987), 340–354.

    Article  MathSciNet  MATH  Google Scholar 

  10. The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.4.12; 2008 (http://www.gap-system.org).

  11. R. Gow, Products of two involutions in classical groups of characteristic 2, Journal of Algebra 71 (1981), 583–591.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Guralnick, Cyclic quotients of transitive groups, Journal of Algebra 234 (2000), 507–532.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Guralnick and P. Tiep, First cohomology groups of Chevalley groups in cross characteristic, Annals of Mathematics 174 (2011), 543–559.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Hartley and A. Turull, On characters of coprime operator groups and the Glauberman character correspondence, Journal für die Reine und Angewandte Mathematik 451 (1994), 175–219.

    MathSciNet  MATH  Google Scholar 

  15. M. Isaacs, Degrees of sums in a separable field extension, Proceedings of the American Mathematical Society 25 (1970), 638–641.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Isaacs, Finite Group Theory, Graduate Studies in Mathematics, Vol. 92, American Mathematical Society, Providence, RI, 2008.

    MATH  Google Scholar 

  17. M. Klemm, Über die Reduktion von Permutationsmoduln, Mathematische Zeitschrift 143 (1975), 113–117.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. W. Liebeck, C. E. Praeger and J. Saxl, On the O’Nan-Scott theorem for finite primitive permutation groups, Journal of the Australian Mathematical Society 44 (1988), 389–396.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. W. Liebeck, C. E. Praeger and J. Saxl, The maximal factorizations of the finite simple groups and their automorphism groups, Memoirs of the American Mathematical Society, Vol. 86, No. 432, American Mathematical Society, Providence, RI, 1990.

    Google Scholar 

  20. M. W. Liebeck, C. E. Praeger and J. Saxl, On factorizations of almost simple groups, Journal of Algebra 185 (1996), 409–419.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Livingstone, A permutation representation of the Janko group, Journal of Algebra 6 (1967), 43–55.

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Mortimer, The modular permutation representations of the known doubly transitive groups, Proceedings of the London Mathematical Society 41 (1980), 1–20.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Navarro, Characters and Blocks of Finite Groups, London Mathematical Society Lecture Notes Series, Vol. 250, Cambridge Univerisy Press, Cambridge, 1998.

    Book  MATH  Google Scholar 

  24. G. Navarro, personal communication with the first author.

  25. P. M. Neumann, Finite permutation groups, edge-coloured graphs and matrices, in Topics in Group Theory and Computation: Proceedings of a Summer School held at University College, Galway under the auspices of the Royal Irish Academy from 16th to 21st August, 1973, (Michael P. J. Curran, ed.), Academic Press, London-new York, 1977, pp. 82–118.

    Google Scholar 

  26. C. E. Praeger, Finite quasiprimitive graphs, in Surveys in Combinatorics, London Mathematical Society Lecture Note Series, Vol. 241, Cambridge University Press, Cambridge, 1997, pp. 65–85.

    Google Scholar 

  27. M. Suzuki, Group Theory I, Springer-Verlag, New York, 1982.

    MATH  Google Scholar 

  28. M. J. Wonenburger, Transformations which are products of two involutions, Journal of Mathematics and Mechanics 16 (1966), 327–338.

    MathSciNet  MATH  Google Scholar 

  29. T. Yuster, Orbit sizes under automorphism actions in finite groups, Journal of Algebra 82 (1983), 342–352.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Dolfi.

Additional information

The first author is supported by the MIUR project “Teoria dei gruppied applicazioni”.

The second author was partially supported by NSF grant DMS-1001962.

The third author is supported by the ARC Federation Fellowship Project FF0776186.

The fourth author is supported by the University of Western Australia as part of the Federation Fellowship project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolfi, S., Guralnick, R., Praeger, C.E. et al. Coprime subdegrees for primitive permutation groups and completely reducible linear groups. Isr. J. Math. 195, 745–772 (2013). https://doi.org/10.1007/s11856-012-0163-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-012-0163-4

Keywords

Navigation