Skip to main content
Log in

Nonconventional Poisson limit theorems

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The classical Poisson theorem says that if ξ 1, ξ 2, … are i.i.d. 0–1 Bernoulli random variables taking on 1 with probability p n λ/n, then the sum S n = Σ n i=1 ξ i is asymptotically in n Poisson distributed with the parameter λ. It turns out that this result can be extended to sums of the form \({S_n} = \sum\nolimits_{i = 1}^n {{\xi _{{q_1}(i)}} \cdots {\xi _{{q_\ell }(i)}}} \) where now \({X_{{q_1}(i), \ldots ,}}{X_{{q_\ell }(i)}}\) and \({T^{{q_1}(i)}}x, \ldots ,{T^{{q_\ell }(i)}}x\) are integer-valued increasing functions. We obtain also the Poissonian limit for numbers of arrivals to small sets of ℓ-tuples \({X_{{q_1}(i), \ldots ,}}{X_{{q_\ell }(i)}}\) for some Markov chains X n and for numbers of arrivals of \({T^{{q_1}(i)}}x, \ldots ,{T^{{q_\ell }(i)}}x\) to small cylinder sets for typical points x of a sub-shift of finite type T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abadi, Sharp error terms and necessary conditions for exponential hitting times in mixing processes, Annals of Probability 32 (2004), 243–264.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Abadi and B. Saussol, Hitting and returning into rare events for all alpha-mixing processes, Stochastic Processes and their Applications 121 (2011), 314–323.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. D. Barbour and G. K. Eagleson, Poisson convergence for dissociated statistics, Journal of the Royal Statistical Society: Series B 46 (1984), 397–402.

    MathSciNet  MATH  Google Scholar 

  4. A. D. Barbour, L. Holst and S. Janson, Poisson Approximation, Oxford University Press, Oxford, 1992.

    MATH  Google Scholar 

  5. R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics 470, Springer-Verlag, Berlin, 1975.

    MATH  Google Scholar 

  6. M. Denker, Remarks on weak limit laws for fractal sets, in Fractal Geometry and Stochastics (C. Bandt, S. Graf and M. Zahle, eds.), Progress in Probabilith 37, Birkhäuser, Basel, 1995, pp. 167–178.

    Chapter  Google Scholar 

  7. D. Dolgopyat, Limit theorems for partially hyperbolic systems, Transactions of the American Mathematical Society 356 (2004), 1637–1689.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. L. Doob, Stochastic Processes, J. Wiley, New York, 1990.

    MATH  Google Scholar 

  9. T. Erhardsson, Compound Poisson approximation for Markov chains using Stein’s method, Annals of Probability 27 (1999), 565–596.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Furstenberg, Nonconventional ergodic averages, Proceedings of Symposia in Pure Mathematics 50 (1990), 43–56.

    Article  MathSciNet  Google Scholar 

  11. N. Haydn and S. Vaienti, The limiting distribution and error terms for return times of dynamical systems, Discrete and Continuous Dynamical Systems. Series A 10 (2004), 589–616.

    Article  MathSciNet  MATH  Google Scholar 

  12. N. Haydn and S. Vaienti, The compound Poisson distribution and return times in dynamical systems, Probability Theory and Related Fields 144 (2009), 517–542.

    Article  MathSciNet  MATH  Google Scholar 

  13. Yu. Kifer, A nonconventional strong law of large numbers and fractal dimensions of some multiple recurrence sets, Stochastics and Dynamics 12 (2012), 1150023.

    Article  MathSciNet  Google Scholar 

  14. Yu. Kifer and S.R.S. Varadhan, Nonconventional limit theorems in discrete and continuous time via martingales, Annals of Probability, to appear.

  15. B. Pitskel, Poisson limit law for Markov chains, Ergodic Theory and Dynamical Systems 11 (1991), 501–513.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. A. Sevast’yanov, Poisson limit law for a scheme of sums of dependent random variables, Theory of Probability and its Applications 17 (1972), 695–699.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Kifer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kifer, Y. Nonconventional Poisson limit theorems. Isr. J. Math. 195, 373–392 (2013). https://doi.org/10.1007/s11856-012-0162-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-012-0162-5

Keywords

Navigation