Abstract
A ℚ-homology plane is a normal complex algebraic surface having trivial rational homology. We obtain a structure theorem for ℚ-homology planes with smooth locus of non-general type. We show, in particular, that if a ℚ-homology plane contains a non-quotient singularity, then it is a quotient of an affine cone over a projective curve by an action of a finite group respecting the set of lines through the vertex. In particular, it is contractible, has negative Kodaira dimension and only one singular point. We describe minimal normal completions of such planes.
This is a preview of subscription content, access via your institution.
References
S. S. Abhyankar, Quasirational singularities, American Journal of Mathematics 101 (1979), 267–300.
M. Artin, On isolated rational singularities of surfaces, American Journal of Mathematics 88 (1966), 129–136.
W. P. Barth, K. Hulek, C. A. M. Peters and A. Van de Ven, Compact complex surfaces, second edn., Results in Mathematics and Related Areas, 3rd Series, A Series of Modern Surveys in Mathematics, Vol. 4, Springer-Verlag, Berlin, 2004.
E. Brieskorn, Rationale Singularitäten komplexer Flächen, Inventiones Mathematicae 4 (1967/1968), 336–358.
D. Daigle and P. Russell, On log ℚ-homology planes and weighted projective planes, Canadian Journal of Mathematics 56 (2004), 1145–1189.
H. Flenner and M. Zaidenberg, Rational curves and rational singularities, Mathematische Zeitschrift 244 (2003), 549–575.
T. Fujita, On the topology of noncomplete algebraic surfaces, Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics 29 (1982), 503–566.
M. Goresky and R. MacPherson, Stratified Morse Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Vol. 14, Springer-Verlag, Berlin, 1988.
R. V. Gurjar and M. Miyanishi, Affine lines on logarithmic Q -homology planes, Mathematische Annalen 294 (1992), 463–482.
R. V. Gurjar, C. R. Pradeep, and Anant. R. Shastri, On rationality of logarithmicQ-homology planes. II, Osaka Journal of Mathematics 34 (1997), 725–743.
H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Mathematische Annalen 146 (1962), 331–368.
R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York, 1977.
A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.
S. Iitaka, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 76, Springer-Verlag, New York, 1982, An introduction to birational geometry of algebraic varieties, North-Holland Mathematical Library, 24.
Y. Kawamata, On the classification of noncomplete algebraic surfaces, in Algebraic Geometry (Proc. Summer Meeting, University Copenhagen, Copenhagen, 1978), Lecture Notes in Mathematics, Vol. 732, Springer, Berlin, 1979, pp. 215–232.
M. Koras and P. Russell, C*-actions on C 3: the smooth locus of the quotient is not of hyperbolic type, Journal of Algebraic Geometry 8 (1999), 603–694.
M. Koras and P. Russell, Contractible affine surfaces with quotient singularities, Transformation Groups 12 (2007), 293–340.
A. Langer, Logarithmic orbifold Euler numbers of surfaces with applications, Proceedings of the London Mathematical Society, Third Series 86 (2003), 358–396.
H. B. Laufer, On rational singularities, American Journal of Mathematics 94 (1972), 597–608.
J. Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Institut des Hautes Études Scientifiques. Publications Mathématiques (1969), no. 36, 195–279.
M. Miyanishi, Singularities of normal affine surfaces containing cylinderlike open sets, Journal of Algebra 68 (1981), 268–275.
M. Miyanishi, Open Algebraic Surfaces, CRM Monograph Series, Vol. 12, American Mathematical Society, Providence, RI, 2001.
M. Miyanishi and T. Sugie, Homology planes with quotient singularities, Journal of Mathematics of Kyoto University 31 (1991), 755–788.
M. Miyanishi and S. Tsunoda, Noncomplete algebraic surfaces with logarithmic Kodaira dimension −∞ and with nonconnected boundaries at infinity, Japanese Journal of Mathematics, New Series 10 (1984), 195–242.
D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Institut des Hautes Études Scientifiques. Publications Mathématiques (1961), 5–22.
S. Yu. Orevkov, On singularities that are quasirational in the sense of Abhyankar, Rossiĭskaya Akademiya Nauk 50 (1995), 201–202.
P. Orlik and P. Wagreich, Isolated singularities of algebraic surfaces with C* action, Annals of Mathematics, Second Series 93 (1971), 205–228.
K. Palka, Exceptional singular Q -homology planes, Universite de Grenoble, Annales de l’Institut Fourier 61 (2011), 745–774, arXiv:0909.0772.
K. Palka, Classification of singular Q -homology planes. II.C 1-and C *-rulings, Pacific Journal of Mathematics 258 (2012), 421–457. arXiv:1201.2463.
H. Pinkham, Normal surface singularities with C* action, Mathematische Annalen 227 (1977), 183–193.
C. R. Pradeep and A. R. Shastri, On rationality of logarithmic Q -homology planes. I, Osaka Journal of Mathematics 34 (1997), 429–456.
M. Reid, Young person’s guide to canonical singularities, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proceedings of Symposia in Pure Mathematics, Vol. 46, American Mathematical Society, Providence, RI, 1987, pp. 345–414.
S. Schröer, On contractible curves on normal surfaces, Journal für die Reine und Angewandte Mathematik 524 (2000), 1–15.
S. Tsunoda, Structure of open algebraic surfaces. I, Journal of Mathematics of Kyoto University 23 (1983), 95–125.
Author information
Authors and Affiliations
Corresponding author
Additional information
The author was supported by Polish Grant NCN N N201 608640.
Rights and permissions
About this article
Cite this article
Palka, K. Classification of singular ℚ-homology planes. I. Structure and singularities. Isr. J. Math. 195, 37–69 (2013). https://doi.org/10.1007/s11856-012-0123-z
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11856-012-0123-z