## Abstract

The ring of Fermat reals is an extension of the real field containing nilpotent infinitesimals, and represents an alternative to Synthetic Differential Geometry in classical logic. In the present paper, our first aim is to study this ring by using standard topological and algebraic structures. We present the Fermat topology, generated by a complete pseudo-metric, and the omega topology, generated by a complete metric. The first one is closely related to the differentiation of (non-standard) smooth functions defined on open sets of Fermat reals. The second one is connected to the differentiation of smooth functions defined on infinitesimal sets. Subsequently, we prove that every (proper) ideal is a set of infinitesimals whose order is less than or equal to some real number. Finally, we define and study roots of infinitesimals. A computer implementation as well as an application to infinitesimal Taylor formulas with fractional derivatives are presented.

### Similar content being viewed by others

## References

R. Abraham, J.E. Marsden and T. Ratiu,

*Manifolds, Tensors, Analysis and Applications*. second edition, Springer-Verlag, Berlin, 1988.W. Bertram,

*Differential Geometry, Lie Groups and Symmetric Spaces over General Base Fields and Rings*, American Mathematical Society, Providence, RI, 2008.M. Berz, G. Hoffstatter, W. Wan, K. Shamseddine and K. Makino,

*COSY INFINITY and its Applications to Nonlinear Dynamics*, in*Chapter Computational Differentiation: Techniques, Applications, and Tools*, SIAM, Philadelphia, Penn, 1966, pp. 363–367.A. Bigard, K. Keimel and S. Wolfenstein,

*Groupes et anneaux reticulés*, Lecture Notes in Mathematics, Vol. 608, Springer-Verlag, Berlin, 1977.J. F. Colombeau,

*New Generalized Functions and Multiplication of Distributions*, North-Holland Mathematics Studies**84**, North-Holland, Amsterdam, 1984.J. F. Colombeau,

*Multiplication of Distributions*, Springer, Berlin, 1992.J. H. Conway,

*On Numbers and Games*, London Mathematical Society Monographs, No. 6, Academic Press, London & New York, 1976.P. Ehrlich,

*An alternative construction of Conway’s ordered field No*. Algebra Universalis**25**(1988), 7–16.P. Giordano,

*Fermat reals: Nilpotent infinitesimals and infinite dimensional spaces*, arXiv:0907.1872, July 2009.P. Giordano,

*Fermat-Reyes method in the ring of Fermat reals*, Advances in Mathematics**228**(2011), 862–893. DOI: 10.1016/j.aim.2011.06.008.P. Giordano,

*Infinitesimals without logic*, Russian Journal of Mathematical Physics**17**(2010), 159–191.P. Giordano,

*Order relation and geometrical representation of Fermat reals*, American Mathematical Journal, Mathematical Proceedings of the Cambridge Philosophical Society, submitted.P. Giordano,

*The ring of Fermat reals*, Advances in Mathematics**225**(2010), 2050–2075. DOI: 10.1016/j.aim.2010.04.010.P. Iglesias-Zemmour,

*Diffeology*, http://math.huji.ac.il/~piz/documents/Diffeology.pdf, July 9 2012.A. Kock,

*Synthetic Differential Geometry*, Volume 51 London Mathematical Society Lecture Note Series, Cambridge University Press, 1981.I. Kolár, P.W. Michor and J. Slovák,

*Natural Operations in Differential Geometry*, Springer-Verlag, Berlin, Heidelberg, New York, 1993.A. Kriegl and P.W. Michor,

*Product preserving functors of infinite dimensional manifolds*, Archivum Mathematicum (Brno)**32**(1996), 289–306.A. Kriegl and P.W. Michor,

*The Convenient Settings of Global Analysis*, Mathematical Surveys and Monographs**53**, American Mathematical Society, Providence, RI, 1997.R. Lavendhomme,

*Basic Concepts of Synthetic Differential Geometry*, Kluwer Academic Publishers, Dordrecht, 1996.T. Levi-Civita,

*Sugli infiniti ed infinitesimi attuali quali elementi analitici*, Atti del Regio Istituto Veneto di Scienze, Lettere ed Arti**VII**(1893), 1765–1815.I. Moerdijk and G.E. Reyes,

*Models for Smooth Infinitesimal Analysis*, Springer, Berlin, 1991.M. Oberguggenberger,

*Multiplication of Distributions and Applications to Partial Differential Equations*, Pitman Research Notes in Mathematics Series**259**, Longman Scientific & Technical, Harlow 1992.Z. M. Odibat and N. T. Shawagfeh,

*Generalized Taylor’s formula*, Applied Mathematics and Computation**186**(2007), 286–293.A. Robinson,

*Non-standard Analysis*, Princeton University Press, 1966.K. Shamseddine,

*New Elements of Analysis on the Levi-Civita Field*, PhD thesis, Michigan State University, East Lansing, Michigan, 1999.K. Shamseddine and M. Berz,

*Intermediate value theorem for analytic functions on a Levi-Civita field*, The Bulletin of the Belgian Mathematical Society Simon Stevin**14**(2007), 1001–1015.H. Vernaeve,

*Ideals in the ring of Colombeau generalized numbers*, Communications in Algebra**38**(2010), 2199–2228.

## Author information

### Authors and Affiliations

### Corresponding author

## Additional information

Supported by an L. Meitner FWF (Austria) grant (M1247-N13).

Supported by FWF research grants Y237 and P20525.

## Rights and permissions

## About this article

### Cite this article

Giordano, P., Kunzinger, M. Topological and algebraic structures on the ring of Fermat reals.
*Isr. J. Math.* **193**, 459–505 (2013). https://doi.org/10.1007/s11856-012-0079-z

Received:

Published:

Issue Date:

DOI: https://doi.org/10.1007/s11856-012-0079-z