Abstract
We present a randomized algorithm that on inputting a finite field K with q elements and a positive integer d outputs a degree d irreducible polynomial in K[x]. The running time is d 1+ɛ(d)×(log q)5+ɛ(q) elementary operations. The function ɛ in this expression is a real positive function belonging to the class o(1), especially, the complexity is quasi-linear in the degree d. Once given such an irreducible polynomial of degree d, we can compute random irreducible polynomials of degree d at the expense of d 1+ɛ(d) × (log q)1+ɛ(q) elementary operations only.
Similar content being viewed by others
References
L.M. Adleman and H. W. Lenstra, Jr., Finding irreducible polynomials over finite fields, Proceedings of the 15th Annual ACM Symposium on Theory of Computing, ACM, Boston, MA, 1983, pp. 350–355.
M. Ben-Or, Probabilistic algorithms in finite fields, 22nd Annual Symposium on Foundations of Computer Science 11 (1981), 394–398.
A. Bostan, Ph. Flajolet, B. Salvy and É. Schost, Fast computation of special resultants, Journal of Symbolic Computation 41 (2006), 1–29.
A. Bostan, L. González-Vega, H. Perdry and É. Schost, From Newton sums to coefficients: complexity issues in characteristic p, Proceedings of MEGA’05, 2005.
J. von zur Gathen and J. Gerhard, Modern Computer Algebra, second edition, Cambridge University Press, 2003.
J. Giraud, Remarque sur une formule de Shimura-Taniyama, Inventiones Mathematicae 5 (1968), 231–236.
E. W. Howe, On the group orders of elliptic curves over finite fields, Compositio Mathematica 85 (1993), 229–247.
H. Iwaniec, On the problem of Jacobsthal, Demonstratio Mathematica 11 (1978), 225–231.
E. Kaltofen and V. Y. Pan, Parallel solution of Toeplitz and Toeplitz-like linear systems over fields of small positive characteristic, in Proceedings of PASCO’94, Lecture Notes Series on Computing 5, World Scientific Publishing Company, Singapore, 1994, pp. 225–233.
K. S. Kedlaya and C. Umans, Fast modular composition in any characteristic, in Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, Los Alamitos, CA, 2008, pp. 146–155.
H. W. Lenstra, Jr., Factoring integers with elliptic curves, Annals of Mathematics 126 (1987), 649–673.
H. W. Lenstra, Jr., Algorithms for finite fields, in Number Theory and Cryptography (Sydney, 1989), London Mathematical Society Lecture Note Series 154, Cambridge University Press, 1990, pp. 76–85.
H. W. Lenstra, Jr., Finding isomorphisms between finite fields, Mathematics of Computation, Vol. 56, 193 (1991), 329–347.
H. W. Lenstra, Jr., Complex multiplication structure of elliptic curves, Journal of Number Theory 56 (1996), 227–241.
H. W. Lenstra, Jr. and B. de Smit, Standard models for finite fields: the definition, http://www.math.leidenuniv.nl/~desmit, 2008, pp. 1–4.
R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Cambridge, MA, 1983.
Q. Liu, Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Mathematics 6, Oxford University Press, 2002.
D. Panario and B. Richmond, Analysis of Ben-Or’s polynomial irreducibility test, Random Structures and Algorithms 13 (1998), 439–456.
C. H. Papadimitriou, Computational Complexity, Addison Wesley, Cambridge, MA, 1967.
A. Schönhage, Fast parallel computation of characteristic polynomials by Leverrier’s power sum method adapted to fields of finite characteristic, in Automata, Languages and Programming (Lund, 1993), Lecture Notes in Computer Science 700, 1993, Springer, Berlin, pp. 410–417.
J.-P. Serre, Complex multiplication, in Algebraic Number Theory (J. W. S. Cassels and A. Fröhlich eds.), Academic Press, New York, 1967.
V. Shoup, Fast construction of irreducible polynomials over finite fields, in Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms (Austin, TX, 1993), ACM, New York, 1993, pp. 484–492.
J. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics 106, Springer-Verlag, Berlin, 1986; expanded 2nd edition, 2009.
C. Umans, Fast polynomial factorization and modular composition in small characteristic, in Proceedings of the 40th Annual ACM Symposium on Theory of Computing, 1986, pp. 350–355.
J. Vélu, Isogénies entre courbes elliptiques, Comptes Rendus de l’Académie des Sciences, Série I 273 (1971), 238–241.
W. C. Waterhouse, Abelian varieties over finite fields, Annales Scientifiques de l’École Normale Supérieure, Série 4 2 (1969), 521–560.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Couveignes, JM., Lercier, R. Fast construction of irreducible polynomials over finite fields. Isr. J. Math. 194, 77–105 (2013). https://doi.org/10.1007/s11856-012-0070-8
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11856-012-0070-8