Skip to main content
Log in

An infinitary probability logic for type spaces

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Type spaces in the sense of Harsanyi (1967/68) play an important role in the theory of games of incomplete information. They can be considered as the probabilistic analog of Kripke structures. By an infinitary propositional language with additional operators “individual i assigns probability at least α to” and infinitary inference rules, we axiomatize the class of (Harsanyi) type spaces. We prove that our axiom system is strongly sound and strongly complete. To the best of our knowledge, this is the very first strong completeness theorem for a probability logic with σ-additive probabilities. We show this by constructing a canonical type space whose states consist of all maximal consistent sets of formulas. Furthermore, we show that this canonical space is universal (i.e., a terminal object in the category of type spaces) and beliefs complete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Armbruster and W. Böge, Bayesian game theory, in Game Theory and Related Topics, (O. Moeschlin and D. Pallaschke, es.), North-Holland, Amsterdam, 1979.

    Google Scholar 

  2. R. J. Aumann, Agreeing to disagree, The Annals of Statistics 4 (1976), 1236–1239.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. J. Aumann, Interactive epistemology, Discussion paper Nr. 67, Center of Rationality and Interactive Decision Theory, The Hebrew University of Jerusalem, 1995.

  4. R. J. Aumann, Interactive epistemology I: Knowledge, International Journal of Game Theory 28 (1999), 263–300.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. J. Aumann, Interactive epistemology II: Probability, International Journal of Game Theory 28 (1999), 301–314.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. J. Aumann and A. Brandenburger, Epistemic conditions for Nash equilibrium, Econometrica 63 (1995), 1161–1180.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. J. Aumann and A. Heifetz, Incomplete information, in Handbook of Game Theory, Volume 3, (R.J. Aumann and S. Hart, eds.), Elsevier/North-Holland, Amsterdam 2002, pp. 1665–1686.

    Google Scholar 

  8. P. Battigalli and M. Siniscalchi, Hierarchies of conditional beliefs and interactive epistemology in dynamic games, Journal of Economic Theory 88 (1999), 188–230.

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Böge and Th. Eisele, On solutions of Bayesian games, International Journal of Game Theory 8 (1979), 193–215.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Brandenburger, On the Eexistence of a ‘complete’ possibility structure, in Cognitive Processes and Economic Behavior, (Marcello Basili, Nicola Dimitri and Itzhak Gilboa, eds.), Routledge, 2003, pp. 30–34.

  11. A. Brandenburger and E. Dekel, Hierarchies of beliefs and common knowledge, Journal of Economic Theory 59 (1993), 189–198.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Brandenburger and H. J. Keisler, An impossibility theorem on beliefs in games, Studia Logica 84 (2006), 211–240.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. M. Dudley, Real Analysis and Probability, Wadsworth, Belmont, CA, 1989.

  14. R. Fagin and J. Y. Halpern, Reasoning about knowledge and probability, Journal of the ACM 41 (1994), 340–367, Corrigendum in 45 (1998), 214.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Fagin, J.Y. Halpern and N. Megiddo, A logic for reasoning about probabilities, Information and Computation 87 (1990), 78–128.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Fagin, J. Y. Halpern, Y. Moses and M. Vardi, Reasoning about Knowledge, MIT Press, Cambridge, MA, 1995.

    MATH  Google Scholar 

  17. J. C. Harsanyi, Games with incomplete information played by Bayesian players, parts I-III, Management Science, 14 (1967/8), 159–182, 320–334, 486–502.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Heifetz, The Bayesian formulation of incomplete information—the noncompact case, International Journal of Game Theory 21 (1993), 329–338.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Heifetz, Infinitary S5-epistemic logic, Mathematical Logic Quarterly 43 (1997), 333–342.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Heifetz and P. Mongin, Probability logic for type spaces, Games and Economic Behavior 35 (2001), 31–53.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Heifetz and D. Samet, Knowledge spaces with arbitrarily high rank, Games and Economic Behavior 22 (1998), 260–273.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Heifetz and D. Samet, Topology-free typology of beliefs, Journal of Economic Theory 82 (1998), 324–341.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Heifetz and D. Samet, Coherent beliefs are not always types, Journal of Mathematical Economics 32 (1999), 475–488.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Hintikka, Knowledge and Belief, Cornell University Press, Ithaca, 1962.

    Google Scholar 

  25. C. R. Karp, Languages with Expressions of Infinite Length, North-Holland, Amsterdam, 1964.

    MATH  Google Scholar 

  26. S. A. Kripke, Semantical analysis of modal logic I. Normal modal propositional calculi, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 9 (1963), 363–374.

    Article  MathSciNet  Google Scholar 

  27. T. Mariotti, M. Meier and M. Piccione, Hierarchies of beliefs for compact possibility models, Journal of Mathematical Economics 41 (2005), 303–324.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Meier, On the nonexistence of universal information structures, Journal of Economic Theory 122 (2005), 132–139.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Meier, Finitely additive beliefs and universal type spaces, The Annals of Probability 34 (2006), 386–422.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Meier, Universal knowledge-belief structures, Games and Economic Behavior 62 (2008), 53–66.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. F. Mertens, S. Sorin and S. Zamir, Repeated games: Part A: Background material, CORE Discussion Paper Nr. 9420, Université Catholique de Louvain, 1994, and Repeated games, unpublished manuscript, Université Catholique de Louvain, 2000.

  32. J. F. Mertens and S. Zamir, Formulation of Bayesian analysis for games with incomplete information, International Journal of Game Theory 14 (1985), 1–29.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Pinter, Type space on a purely measurable parameter space, Economic Theory 26 (2005), 129–139.

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Salonen, On completeness of knowledge models, University of Turku, Department of Economics, Research Report 94, 2001 (revised 2006).

  35. M. Siniscalchi, Epistemic game theory: Beliefs and types, in The New Palgrave Dictionary of Economics, 2nd Edition (S. Durlauf and L. Blume, eds.), Palgrave Macmillan, New York, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Meier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier, M. An infinitary probability logic for type spaces. Isr. J. Math. 192, 1–58 (2012). https://doi.org/10.1007/s11856-012-0046-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-012-0046-8

Keywords

Navigation