Skip to main content
Log in

On the exchange of intersection and supremum of σ-fields in filtering theory

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We construct a stationary Markov process with trivial tail σ-field and a nondegenerate observation process such that the corresponding nonlinear filtering process is not uniquely ergodic. This settles in the negative a conjecture of the author in the ergodic theory of nonlinear filters arising from an erroneous proof in the classic paper of H. Kunita (1971), wherein an exchange of intersection and supremum of σ-fields is taken for granted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Baxendale, P. Chigansky and R. Liptser, Asymptotic stability of the Wonham filter: ergodic and nonergodic signals, SIAM Journal on Control and Optimiziation 43 (2004), 643–669.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Brossard and C. Leuridan, Chaînes de Markov constructives indexées par Z, The Annals of Probability 35 (2007), 715–731.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Budhiraja, Asymptotic stability, ergodicity and other asymptotic properties of the nonlinear filter, Annales de l’Institut Henri Poincaré. Probabilités et Statistiques 39 (2003), 919–941.

    Article  MathSciNet  MATH  Google Scholar 

  4. O. Cappé, E. Moulines and T. Rydén, Inference in Hidden Markov Models, Springer Series in Statistics, Springer, New York, 2005.

    MATH  Google Scholar 

  5. L. Chaumont and M. Yor, Exercises in Probability, Cambridge University Press, Cambridge, 2003.

    Book  MATH  Google Scholar 

  6. P. Chigansky and R. van Handel, A complete solution to Blackwell’s unique ergodicity problem for hidden Markov chains, The Annals of Applied Probability 20 (2010), 2318–2345.

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Crimaldi, G. Letta and L. Pratelli, Sur l’interversion de l’ordre entre deux opérations sur les tribus, Comptes Rendus Mathématique. Académie des Sciences. Paris 345 (2007), 341–344.

    MathSciNet  MATH  Google Scholar 

  8. F. den Hollander and J. E. Steif, Random walk in random scenery: a survey of some recent results, in Dynamics & Stochastics, IMS Lecture Notes Monograph Series, Vol. 48, Institute of Mathematical Statistics, Beachwood, OH, 2006, pp. 53–65.

    Google Scholar 

  9. M. Émery and W. Schachermayer, On Vershik’s standardness criterion and Tsirelson’s notion of cosiness, Séminaire de Probabilités, XXXV, Lecture Notes in Mathematics, Vol. 1755, Springer, Berlin, 2001, pp. 265–305.

    Google Scholar 

  10. S. A. Kalikow, T, T −1 transformation is not loosely Bernoulli, Annals of Mathematics 115 (1982), 393–409.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Kesten, Distinguishing and reconstructing sceneries from observations along random walk paths, in Microsurveys in Discrete Probability (Princeton, NJ, 1997), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., Vol. 41, American Mathematical Society, Providence, RI, 1998, pp. 75–83.

    Google Scholar 

  12. H. Kunita, Asymptotic behavior of the nonlinear filtering errors of Markov processes, Journal of Multivariate Analysis 1 (1971), 365–393.

    Article  MathSciNet  Google Scholar 

  13. S. Laurent, Further comments on the representation problem for stationary processes, Statistics & Probability Letters 80 (2010), 592–596.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. J. Majda, J. Harlim and B. Gershgorin, Mathematical strategies for filtering turbulent dynamical systems, Discrete and Continuous Dynamical Systems 27 (2010), 441–486.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Masani, Wiener’s contributions to generalized harmonic analysis, prediction theory and filter theory, American Mathematical Society. Bulletin 72 (1966), 73–125.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Matzinger and S. W. W. Rolles, Reconstructing a random scenery observed with random errors along a random walk path, Probability Theory and Related Fields 125 (2003), 539–577.

    Article  MathSciNet  MATH  Google Scholar 

  17. I. Meilijson, Mixing properties of a class of skew-products, Israel Journal of Mathematics 19 (1974), 266–270.

    Article  MathSciNet  Google Scholar 

  18. P. A. Meyer, La théorie de la prédiction de F. Knight, in Séminaire de Probabilités, X (Premi`ere partie, Univ. Strasbourg, Strasbourg, année universitaire 1974/1975), Lecture Notes in Mathematics, Vol. 511, Springer, Berlin, 1976, pp. 86–103.

    Google Scholar 

  19. S. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, second edition, Cambridge University Press, Cambridge, 2009.

    Book  MATH  Google Scholar 

  20. D. S. Ornstein, An application of ergodic theory to probability theory, The Annals of Probability 1 (1973), 43–65.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Rahe, Relatively finitely determined implies relatively very weak Bernoulli, Canadian Journal of Mathematics 30 (1978), 531–548.

    Article  MathSciNet  MATH  Google Scholar 

  22. Ya. G. Sinai, Kolmogorov’s work on ergodic theory, The Annals of Probability 17 (1989), 833–839.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Smorodinsky, Ergodic Theory, Entropy, Lecture Notes in Mathematics, Vol. 214, Springer-Verlag, Berlin, 1971.

    MATH  Google Scholar 

  24. H. Totoki, On a class of special flows, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 15 (1970), 157–167.

    Article  MathSciNet  Google Scholar 

  25. R. van Handel, The stability of conditional Markov processes and Markov chains in random environments, The Annals of Probability 37 (2009), 1876–1925.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. van Handel, Uniform time average consistency of Monte Carlo particle filters, Stochastic Processes and their Applications 119 (2009), 3835–3861.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. van Handel, When do nonlinear filters achieve maximal accuracy? SIAM Journal on Control and Optimization 48 (2009/10), 3151–3168.

    Article  MathSciNet  Google Scholar 

  28. V. A. Volkonskii and Yu. A. Rozanov, Some limit theorems for random functions. I, Theory of Probability and its Applications 4 (1959), 178–197.

    Article  MathSciNet  Google Scholar 

  29. H. von Weizsäcker, Exchanging the order of taking suprema and countable intersections of σ-algebras, Annales de l’Institut Henri Poincaré. Section B. Calcul des Probabilités et Statistique. Nouvelle Série 19 (1983), 91–100.

    MATH  Google Scholar 

  30. B. Weiss, The isomorphism problem in ergodic theory, American Mathematical Society. Bulletin 78 (1972), 668–684.

    Article  MATH  Google Scholar 

  31. D. Williams, Probability with Martingales, Cambridge University Press, 1991.

  32. K. Yano and M. Yor, Around Tsirelson’s equation, or: the evolution process may not explain everything, 2010, preprint, arxiv:0906.3442.

  33. M. Yor, Sur les théories du filtrage et de la prédiction, in Séminaire de Probabilités, XI (Univ. Strasbourg, Strasbourg, 1975/1976), Lecture Notes in Mathematics, Vol. 581, Springer, Berlin, 1977, pp. 257–297.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon van Handel.

Additional information

This work was partially supported by NSF grant DMS-1005575.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Handel, R. On the exchange of intersection and supremum of σ-fields in filtering theory. Isr. J. Math. 192, 763–784 (2012). https://doi.org/10.1007/s11856-012-0045-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-012-0045-9

Keywords

Navigation