Skip to main content
Log in

Scale-oblivious metric fragmentation and the nonlinear Dvoretzky theorem

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We introduce a randomized iterative fragmentation procedure for finite metric spaces, which is guaranteed to result in a polynomially large subset that is D-equivalent to an ultrametric, where D ∈ (2,∞) is a prescribed target distortion. Since this procedure works for D arbitrarily close to the nonlinear Dvoretzky phase transition at distortion 2, we thus obtain a much simpler probabilistic proof of the main result of [3], answering a question from [12], and yielding the best known bounds in the nonlinear Dvoretzky theorem.

Our method utilizes a sequence of random scales at which a given metric space is fragmented. As in many previous randomized arguments in embedding theory, these scales are chosen irrespective of the geometry of the metric space in question. We show that our bounds are sharp if one utilizes such a “scale-oblivious” fragmentation procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Bartal, B. Bollobás and M. Mendel, Ramsey-type theorems for metric spaces with applications to online problems, Journal of Computer and System Sciences 72 (2006), 890–921.

    Article  MathSciNet  MATH  Google Scholar 

  2. Y. Bartal, N. Linial, M. Mendel and A. Naor, On metric Ramsey-type dichotomies, Journal of the London Mathematical Society 71 (2005), 289–303.

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Bartal, N. Linial, M. Mendel and A. Naor, On metric Ramsey-type phenomena, Annals of Mathematics 162 (2005), 643–709.

    Article  MathSciNet  MATH  Google Scholar 

  4. Y. Bartal, N. Linial, M. Mendel and A. Naor, Some low distortion metric Ramsey problems, Discrete & Computational Geometry 33 (2005), 27–41.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Blum, H. Karloff, Y. Rabani and M. Saks, A decomposition theorem for task systems and bounds for randomized server problems, SIAM Journal on Computing 30 (2000), 1624–1661 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Bourgain, T. Figiel and V. Milman, On Hilbertian subsets of finite metric spaces, Israel Journal of Mathematics 55 (1986), 147–152.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Calinescu, H. Karloff and Y. Rabani, Approximation algorithms for the 0-extension problem, SIAM Journal on Computing 34 (2004/05), 358–372 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Charikar and A. Karagiozova, A tight threshold for metric Ramsey phenomena, in Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, 2005, pp. 129–136 (electronic).

    Google Scholar 

  9. A. Dvoretzky, Some results on convex bodies and Banach spaces, in Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press, Jerusalem, 1961, pp. 123–160.

    Google Scholar 

  10. J. Fakcharoenphol, S. Rao and K. Talwar, A tight bound on approximating arbitrary metrics by tree metrics, Journal of Computer and System Sciences 69 (2004), 485–497.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Karloff, Y. Rabani and Y. Ravid, Lower bounds for randomized k-server and motion-planning algorithms, SIAM Journal on Computing 23 (1994), 293–312.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Mendel and A. Naor, Ramsey partitions and proximity data structures, Journal of the European Mathematical Society 9 (2007), 253–275.

    Article  MathSciNet  MATH  Google Scholar 

  13. V. D. Milman, A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies, Akademija Nauk SSSR. Funkcional’nyi Analiz i ego Priloženija 5 (1971), 28–37.

    MathSciNet  Google Scholar 

  14. V. Milman and G. Schechtman, An “isomorphic” version of Dvoretzky’s theorem. II, in Convex Geometric Analysis (Berkeley, CA, 1996), Mathematical Sciences Research Institute Publications Vol. 34, Cambridge University Press, Cambridge, 1999, pp. 159–164.

    Google Scholar 

  15. G. Schechtman, Two observations regarding embedding subsets of Euclidean spaces in normed spaces, Advances in Mathematics 200 (2006), 125–135.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Thorup and U. Zwick, Approximate distance oracles, Journal of the ACM 52 (2005), 1–24 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  17. I. A. Vestfrid and A. F. Timan, A universality property of Hilbert spaces, Doklady Akademii Nauk SSSR 246 (1979), 528–530.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assaf Naor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naor, A., Tao, T. Scale-oblivious metric fragmentation and the nonlinear Dvoretzky theorem. Isr. J. Math. 192, 489–504 (2012). https://doi.org/10.1007/s11856-012-0039-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-012-0039-7

Keywords

Navigation