Partitions of nonzero elements of a finite field into pairs

Abstract

In this paper we prove that the nonzero elements of a finite field with odd characteristic can be partitioned into pairs with prescribed difference (maybe, with some alternatives) in each pair. The algebraic and topological approaches to such problems are considered. We also give some generalizations of these results to packing translates in a finite or infinite field, and give a short proof of a particular case of the Eliahou-Kervaire-Plaigne theorem about sum-sets.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    N. Alon, Combinatorial Nullstellensatz, Combinatorics, Probability and Computing 8 (1999), 7–29.

    MathSciNet  MATH  Article  Google Scholar 

  2. [2]

    N. Alon, Additive Latin transversals, Israel Journal of Mathematics 117 (2000), 125–130.

    MathSciNet  MATH  Article  Google Scholar 

  3. [3]

    B. Bollobás and I. Leader, Sums in the grid, Discrete Mathematics 162 (1996), 31–48.

    MathSciNet  MATH  Article  Google Scholar 

  4. [4]

    A. L. Cauchy, Recherches sur les nombres, Journal de l’École Polytechnique 9 (1813), 99–116.

    Google Scholar 

  5. [5]

    S. Dasgupta, G. Károlyi, O. Serra and B. Szegedy, Transversals of additive Latin squares, Israel Journal of Mathematics 126 (2001), 17–28.

    MathSciNet  MATH  Article  Google Scholar 

  6. [6]

    H. Davenport, On the addition of residue classes, Journal of the London Mathematical Society 10 (1935), 30–32.

    Article  Google Scholar 

  7. [7]

    F. J. Dyson, Statistical theory of the energy levels of complex systems. I, II, III, Journal of Mathematical Physics 3 (1962), 140–175.

    MathSciNet  MATH  Article  Google Scholar 

  8. [8]

    S. Eliahou and M. Kervaire, Sumsets in vector spaces over finite fields, Journal of Number Theory 71 (1998), 12–39.

    MathSciNet  MATH  Article  Google Scholar 

  9. [9]

    S. Eliahou, M. Kervaire and A. Plaigne, Some extensions of the Cauchy-Davenport theorem, Journal of Number Theory 101 (2003), 338–348.

    MathSciNet  MATH  Article  Google Scholar 

  10. [10]

    P. Frankl and R. M. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (1981), 357–368.

    MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    J. Gunson, Proof of a conjecture of Dyson in the statistical theory of energy levels, Journal of Mathematical Physics 3 (1962), 752–753.

    MathSciNet  MATH  Article  Google Scholar 

  12. [12]

    S. Hell, On the number of Tverberg partitions in the prime power case, European Journal of Combinatorics 28 (2007), 347–355.

    MathSciNet  MATH  Article  Google Scholar 

  13. [13]

    J. Kahn and G. Kalai, A counterexample to Borsuk’s conjecture, American Mathematical Society. Bulletin 29 (1993), 60–62.

    MathSciNet  MATH  Article  Google Scholar 

  14. [14]

    G. Károlyi, The Erdős-Heilbronn problem in Abelian groups, Israel Journal of Mathematics 139 (2004), 349–359.

    MathSciNet  MATH  Article  Google Scholar 

  15. [15]

    D. Kohen and I. Sadofschi, A new approach on the seating couples problem, http://arxiv.org/abs/1006.2571, 2010.

  16. [16]

    L. Lovász, Kneser’s conjecture, chromatic numbers, and homotopy, Journal of Combinatorial Theory, Series A 25 (1978), 319–324.

    MathSciNet  MATH  Article  Google Scholar 

  17. [17]

    J. Matoušek, Using the Borsuk-Ulam Theorem, Springer-Verlag, Berlin-Heidelberg, 2003.

    Google Scholar 

  18. [18]

    E. Preissmann and M. Mischler, Seating couples around the King’s table and a new characterization of prime numbers, American Mathematical Monthly 116 (2009), 268–272.

    MathSciNet  MATH  Article  Google Scholar 

  19. [19]

    A. Yu. Volovikov, On the index of G-spaces (Russian), Rossiĭkaya Akademiya Nauk. Matematicheskiĭ Sbornik 191 (2000), 3–22; translation in Sbornik. Mathematics 191 (2000), 1259–1277.

    MathSciNet  Article  Google Scholar 

  20. [20]

    A. Vučić and R. T. Živaljević, Note on a conjecture of Sierksma, Discrete and Computational Geometry 9 (1993), 339–349.

    MathSciNet  MATH  Article  Google Scholar 

  21. [21]

    K. Wilson, Proof of a conjecture of Dyson, Journal of Mathematical Physics 3 (1962), 1040–1043.

    MathSciNet  MATH  Article  Google Scholar 

  22. [22]

    R. Živaljević, Topological methods, in Handbook of Discrete and Computational Geometry (J. E. Goodman and J. O’Rourke, eds.), CRC, Boca Raton, 2004.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. N. Karasev.

Additional information

The research of R. N. Karasev is supported by the Dynasty Foundation, the President’s of Russian Federation grant MK-113.2010.1, the Russian Foundation for Basic Research grants 10-01-00096 and 10-01-00139, the Federal Program “Scientific and scientific-pedagogical staff of innovative Russia” 2009-2013 and grant of the Russian Federation government 11.G34.31.0053.

The research of F. V. Petrov is supported by the Russian Foundation for Basic Research grant 08-01-00379.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Karasev, R.N., Petrov, F.V. Partitions of nonzero elements of a finite field into pairs. Isr. J. Math. 192, 143–156 (2012). https://doi.org/10.1007/s11856-012-0020-5

Download citation

Keywords

  • Simplicial Complex
  • Chromatic Number
  • Free Action
  • Basic Research Grant
  • Ulam Theorem