Lower bounds to helly numbers of line transversals to disjoint congruent balls


A line is a transversal to a family F of convex objects in ℝd if it intersects every member of F. In this paper we show that for every integer d ⩾ 3 there exists a family of 2d−1 pairwise disjoint unit balls in ℝd with the property that every subfamily of size 2d − 2 admits a transversal, yet any line misses at least one member of the family. This answers a question of Danzer from 1957. Crucial to the proof is the notion of a pinned transversal, which means an isolated point in the space of transversals. Here we investigate minimal pinning configurations and construct a family F of 2d−1 disjoint unit balls in ℝd with the following properties: (i) The space of transversals to F is a single point and (ii) the space of transversals to any proper subfamily of F is a connected set with non-empty interior.

This is a preview of subscription content, log in to check access.


  1. [1]

    G. Ambrus, A. Bezdek and F. Fodor, A Helly-type transversal theorem for n-dimensional unit balls, Archiv der Mathematik 86 (2006), 470–480.

    MATH  Article  MathSciNet  Google Scholar 

  2. [2]

    C. Borcea, X. Goaoc and S. Petitjean, Line transversals to disjoint balls, Discrete & Computational Geometry 1–3 (2008), 158–173.

    Article  MathSciNet  Google Scholar 

  3. [3]

    O. Cheong, X. Goaoc, A. Holmsen and S. Petitjean, Hadwiger and Helly-type theorems for disjoint unit balls, Discrete & Computatioanl Geometry 1–3 (2008), 194–212.

    Article  MathSciNet  Google Scholar 

  4. [4]

    L. Danzer, Über ein Problem aus der kombinatorischen Geometrie, Archiv der Mathematik 8 (1957), 347–351.

    MATH  Article  MathSciNet  Google Scholar 

  5. [5]

    L. Danzer, B. Grünbaum and V. Klee, Helly’s theorem and its relatives, in Convexity, Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence, RI, 1963, pp. 101–180.

    Google Scholar 

  6. [6]

    J. Eckhoff, Helly, Radon and Carathéodory type theorems, in Handbook of Convex Geometry, Vol. A, North-Holland, Amsterdam, 1993, pp. 389–448.

    Google Scholar 

  7. [7]

    X. Goaoc, Some discrete properties of the space of line transversals to disjoint balls, in Non-Linear Computational Geometry, Springer, Berlin, 2008, pp. 51–83.

    Google Scholar 

  8. [8]

    J. E. Goodman, R. Pollack and R. Wenger, Geometric transversal theory, in New Trends in Discrete and Computational Geometry, Vol. 10, Algorithms and Combinatorics, Springer, Berlin, 1993, 163–198.

    Google Scholar 

  9. [9]

    B. Grünbaum, On common transversals, Archiv für Mathematische Logik und Grundlagenforschung 9 (1958), 465–469.

    MATH  Google Scholar 

  10. [10]

    H. Hadwiger, Über Eibereiche mit gemeinsamer Treffgeraden, Portugaliae Mathematica 16 (1957), 23–29.

    MATH  MathSciNet  Google Scholar 

  11. [11]

    A. Holmsen, M. Katchalski and T. Lewis, A Helly-type theorem for line transversals to disjoint unit balls, Discrete & Computational Geometry 29 (2003), 595–602.

    MATH  Article  MathSciNet  Google Scholar 

  12. [12]

    A. Holmsen and J. Matoušek, No Helly theorem for stabbing translates by lines ind, Discrete & Computational Geometry 31 (2004), 405–410.

    MATH  Article  MathSciNet  Google Scholar 

  13. [13]

    M. Katchalski, A conjecture of Grünbaum on common transversals, Mathematica Scandinavica 59 (1986), 192–198.

    MATH  MathSciNet  Google Scholar 

  14. [14]

    H. Pottmann and J. Wallner, Computational Line Geometry, Springer-Verlag, Heidelberg, Berlin, 2001.

    Google Scholar 

  15. [15]

    H. Tverberg, Proof of Grünbaum’s conjecture on common transversals, Discrete & Computational Geometry 4 (1989), 191–203.

    MATH  Article  MathSciNet  Google Scholar 

  16. [16]

    R. Wenger, Helly-type theorems and geometric transversals, in Handbook of Discrete & Computational Geometry, 2nd edition, CRC Press LLC, Boca Raton, 2004, pp. 73–96.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Otfried Cheong.

Additional information

O. C. was supported by the Korea Science and Engineering Foundation Grant R01-2008-000-11607-0 funded by the Korean government.

The cooperation by O. C. and X. G. was supported by the INRIA Equipe Associ ée KI.

A. H. was supported by the Brain Korea 21 Project, the School of Information Technology, KAIST, in 2008.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheong, O., Goaoc, X. & Holmsen, A. Lower bounds to helly numbers of line transversals to disjoint congruent balls. Isr. J. Math. 190, 213–228 (2012). https://doi.org/10.1007/s11856-011-0179-1

Download citation


  • Line Transversal
  • Empty Interior
  • Disjoint Ball
  • HELLY Number
  • Common Transversal