Abstract
We extend the definition of quasi-factors for infinite-measure-preserving transformations. The existence of a system with zero Krengel entropy and a quasi-factor with positive entropy is obtained. On the other hand, relative zero-entropy for conservative systems implies relative zero-entropy of any quasi-factor with respect to its natural projection onto the factor. This extends (and is based upon) results of Glasner, Thouvenot and Weiss [6, 7]. Following and extending Glasner and Weiss [8], we also prove that any conservative measure-preserving system with positive entropy in the sense of Danilenko and Rudolph [3] admits any probability-preserving system with positive entropy as a factor. Some applications and connections with Poisson-suspensions are presented.
This is a preview of subscription content, access via your institution.
References
J. Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, Vol. 50, American Mathematical Society, Providence, RI, 1997.
J. Aaronson and M. Keane, Isomorphism of random walks, Israel Journal of Mathematics 87 (1994), 37–63.
A. Danilenko and D. Rudolph, Conditional entropy theory in infinite measure and a question of Krengel, Israel Journal of Mathematics 172 (2009), 93–117.
É. Janvresse, T. Meyerovitch, E. Roy and Thierry de la Rue, Poisson suspensions and entropy for infinite transformations, Transactions of the American Mathematical Society 362 (2010), 3069–3094.
E. Glasner, Quasifactors in ergodic theory, Israel Journal of Mathematics 45 (1983), 198–208.
E. Glasner, J. -P. Thouvenot and B. Weiss, Entropy theory without a past, Ergodic Theory and Dynamical Systems 20 (2000), 1355–1370.
E. Glasner and B. Weiss, Quasi-factors of zero-entropy systems, Journal of the American Mathematical Society 8 (1995), 665–686.
E. Glasner and B. Weiss, Quasifactors of ergodic systems with positive entropy, Israel Journal of Mathematics 134 (2003), 363–380.
J. C. Kieffer, A simple development of the Thouvenot relative isomorphism theory, Annals of Probability 12 (1984), 204–211.
U. Krengel, Entropy of conservative transformations, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 7 (1967), 161–181.
D. Ornstein and B. Weiss, Any flow is an orbit factor of any flow, Ergodic Theory and Dynamical Systems 4 (1984), 105–116.
W. Parry, Entropy and Generators in Ergodic Theory, W. A. Benjamin, New York-Amsterdam, 1969.
E. Roy, Measures de poisson, infinie divisibilité et propriétés ergodiques, Ph. D. thesis, Université Paris, 2005.
E. Roy, Poisson suspensions and infinite ergodic theory, Ergodic Theory and Dynamical Systems 29 (2009), 667–683.
M. Smorodinsky and J.-P. Thouvenot, Bernoulli factors that span a transformation, Israel Journal of Mathematics 32 (1979), 39–43.
J.-P. Thouvenot, Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l’un est un schéma de Bernoulli, Israel Journal of Mathematics 21 (1975), 177–207.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Meyerovitch, T. Quasi-factors and relative entropy for infinite-measure-preserving transformations. Isr. J. Math. 185, 43–60 (2011). https://doi.org/10.1007/s11856-011-0100-y
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11856-011-0100-y