Skip to main content
Log in

Symmetric quasi-norms of sums of independent random variables in symmetric function spaces with the Kruglov property

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let X be a symmetric Banach function space on [0, 1] and let E be a symmetric (quasi)-Banach sequence space. Let f = {f k } n k=1 , n ≥ 1 be an arbitrary sequence of independent random variables in X and let {e k } k=1 E be the standard unit vector sequence in E. This paper presents a deterministic characterization of the quantity

$$||||\sum\limits_{k = 1}^n {{f_k}{e_k}|{|_E}|{|_X}} $$

in terms of the sum of disjoint copies of individual terms of f. We acknowledge key contributions by previous authors in detail in the introduction, however our approach is based on the important recent advances in the study of the Kruglov property of symmetric spaces made earlier by the authors. Authors acknowledge support from the ARC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Astashkin, Extrapolation functors on a family of scales generated by the real interpolation method, Siberian Mathematical Journal 46 (2005), 205–225.

    Article  MathSciNet  Google Scholar 

  2. S. V. Astashkin, Independent functions in rearrangement invariant spaces and the Kruglov property, Sbornik: Mathematics 199 (2008), 945–963.

    Article  MathSciNet  Google Scholar 

  3. S. V. Astashkin and F. A. Sukochev, Comparison of the sums of independent and disjoint functions in symmetric spaces, Mathematical Notes 76 (2004), 449–454.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. V. Astashkin and F. A. Sukochev, Series of independent random variables in rearrangement invariant spaces: an operator approach, Israel Journal of Mathematics 145 (2005), 125–156.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. V. Astashkin and F. A. Sukochev, Series of independent mean zero random variables in rearrangement-invariant spaces having the Kruglov property, Journal of Mathematical Sciences 148 (2008), 795–809.

    Article  MathSciNet  Google Scholar 

  6. S. V. Astashkin and F. A. Sukochev, Best constants in Rosenthal type inequalities and Kruglov operator, The Annals of Probability 38 (2010), 1986–2008.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics 129, Academic Press, Boston, MA, 1988.

    Google Scholar 

  8. M. Sh. Braverman, Independent random variables and rearrangement invariant spaces, London Mathematical Society Lecture Note Series 194, Cambridge University Press, Cambridge, 1984.

    Google Scholar 

  9. N. L. Carothers and S. J. Dilworth, Geometry of Lorentz spaces via interpolation, Functional Analysis Seminar Longhorn Notes 1985–86, University of Texas at Austin, 1987, pp. 107–134.

  10. N. L. Carothers and S. J. Dilworth, Inequalities for sums of independent random variables, Proceedings of the American Mathematical Society 194 (1988), 221–226.

    Article  MathSciNet  Google Scholar 

  11. Y. Gordon, A. Litvak, C. Schütt and E. Werner, Orlicz norms of sequences of random variables, The Annals of Probability 30 (2002), 1833–1853.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Hitczenko and S. Montgomery-Smith, Measuring the magnitude of sums of independent random variables, The Annals of Probability 29 (2001), 447–466.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Hoffman-Jørgensen, Sums of independent Banach space valued random variables, Studia Mathematica 52 (1974), 258–286.

    Google Scholar 

  14. W. Johnson and G. Schechtman, Sums of independent random variables in rearrangement invariant function spaces, The Annals of Probability 17 (1989), 789–808.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Johnson, G. Schechtman and J. Zinn, Best constants in moment inequalities for linear combinations of independent and exchangeable random variables, The Annals of Probability 13 (1985), 234–253.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Junge, The optimal order for the p-th moment of sums of independent random variables with respect to symmetric norms and related combinatorial estimates, Positivity 10 (2006), 201–230.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. G. Krein, Ju. I. Petunin and E. M. Semenov, Interpolation of Linear Operators, Translations of Mathematical Monographs 54, American Mathematical Society, Providence, R.I., 1982.

    Google Scholar 

  18. V. M. Kruglov, Notes about infinitely-divisible distributions, Probability Theory and Applications 15 (1970), 331–336 (in Russian).

    Article  MathSciNet  Google Scholar 

  19. S. Kwapien and C. Schütt, Some combinatorial and probabilistic inequalities and their applications to Banach space theory, Studia Mathematica 82 (1985), 91–106.

    MathSciNet  Google Scholar 

  20. S. Kwapien and W. A. Woyczijnski, Random Series and Stochastic Integrals. Single and Multiple, Birkhäuser, Boston, 1992.

    Book  MATH  Google Scholar 

  21. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Function Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1979.

    MATH  Google Scholar 

  22. M. B. Marcus and G. Pisier, Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes, Acta Mathematica 152 (1984), 245–301.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Montgomery-Smith, Rearrangement invariant norms of symmetric sequence norms of independent sequences of random variables, Israel Journal of Mathematics 131 (2002), 51–60.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Montgomery-Smith and E. M. Semenov, Random rearrangements and operators, American Mathematical Society Translations 184 (1998), 157–183.

    MathSciNet  Google Scholar 

  25. S. Ya. Novikov, Sequences of functions in symmetric spaces, Samara University, Samara, 2008 (in Russian).

    Google Scholar 

  26. G. Peshkir and A. N. Shiryaev, The Khintchine inequalities and martingale expanding sphere of their action, Uspekhi Mat. Nauk 50 (1995), 3–62; English transl. in Russian Math. Surveys 50:5 (1995), 849–904.

    MathSciNet  Google Scholar 

  27. H. P. Rosenthal, On the subspaces of L p (p > 2) spanned by sequences of independent random variables, Israel Journal of Mathematics 8 (1970), 273–303.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Astashkin.

Additional information

Authors acknowledge support from the ARC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astashkin, S.V., Sukochev, F.A. Symmetric quasi-norms of sums of independent random variables in symmetric function spaces with the Kruglov property. Isr. J. Math. 184, 455–476 (2011). https://doi.org/10.1007/s11856-011-0076-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-011-0076-7

Keywords

Navigation