Skip to main content
Log in

Quenching phenomena for a non-local diffusion equation with a singular absorption

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we study the quenching problem for the non-local diffusion equation

$${u_t}(x,t) = \int\limits_\Omega {J(x - y)u(y,t)dy + \int\limits_{{\mathbb{R}^N}\backslash \Omega } {J(x - y)dy - u(x,t) - \lambda {u^{ - p}}(x,t)} } $$

. We prove that there exists a critical parameter λ * such that for all λ > λ * every solution quenches and for λλ * there are both global and quenching solutions. For the quenching solutions we study the quenching rate and the quenching set. We also prove that the solutions of properly rescaled non local problems approximate the solution of the semilinear heat equation with u = 1 at the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bates, P. Fife, X. Ren and X. Wang, Travelling waves in a convolution model for phase transitions, Archive for Rational Mechanics and Analysid 138 (1997), 105–136.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proceedings of the American Mathematical Society 132 (2004), 2433–2439.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Y. Chan, Recent advances in quenching phenomena, Proceedings of Dynamic Systems and Applications 2 (1996), 107–113.

    Google Scholar 

  4. E. Chasseigne, The Dirichlet problem for some nonlocal diffusion equations, Differential Integral Equations 20 (2007), 1389–1404.

    MathSciNet  MATH  Google Scholar 

  5. E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, Journal de Mathématiques Pures et Appliquées 86 (2006), 271–291.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Cortazar, M. Elgueta and J. D. Rossi, A nonlocal diffusion equation whose solutions develop a free boundary, Annales Henri Poincaré 6 (2005), 269–281.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Cortazar, M. Elgueta and J. D. Rossi, Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions, Israel Journal of Mathematics 170 (2009), 53–60.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski, Boundary fluxed for non-local diffusion, Journal of Differential Equations 234 (2007), 360–390.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Coville, J. Dávila and S. Martínez, Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity, SIAM Journal on Mathematical Analysis 39 (2008), 1693–1709.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, Journal of Functional Analysis 8 (1971), 321–340.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, in Trends in Nonlinear Analysis, Springer, Berlin, 2003, pp. 153–191.

    Google Scholar 

  12. M. Fila and H. A. Levine, Quenching on the boundary, Nonlinear Analysis 21 (1993), 795–802.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Friedman, Partial Differential Equation of Parabolic Type, Prentice-Hall, Englewood Cliffs, 1969.

    Google Scholar 

  14. J. S. Guo, On the quenching rate estimate, Quarterly of Applied Mathematics 49 (1991), 747–752.

    MathSciNet  MATH  Google Scholar 

  15. L. I. Ignat and J. D. Rossi, Decay estimates for nonlocal problems via energy methods, Journal de Mathématiques Pures et Appliquées 92 (2009), 163–187.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Kawarada, On solutions of initial-boundary problem for u t = u xx + 1/(1 − u), Kyoto University. Research Institute for Mathematical Sciences. Publications 10 (1974/75), 729–736.

    Article  MathSciNet  Google Scholar 

  17. H. A. Levine, The phenomenon of quenching: a survey, in Trends in the Theory and Practice of Nonlinear Analysis, (V. Lakshmikantham, ed.), Elsevier Science Publ., North-Holland, Amsterdam, 1985, pp. 275–286.

    Chapter  Google Scholar 

  18. H. A. Levine, Quenching and beyond: a survey of recent results, in Nonlinear Mathematical Problems in Industry II, GAKUTO International Series. Mathematical Sciences and Applications 2, Gakkōtosho, Tokyo, 1993, pp. 501–512.

  19. M. Pérez-Llanos and J. D. Rossi, Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term, Nonlinear Analysis 70 (2009), 1629–1640.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Ferreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, R. Quenching phenomena for a non-local diffusion equation with a singular absorption. Isr. J. Math. 184, 387–402 (2011). https://doi.org/10.1007/s11856-011-0072-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-011-0072-y

Keywords

Navigation