Skip to main content
Log in

Pro-ℓ abelian-by-central Galois theory of prime divisors

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In the present paper it is shown that one can recover much of the inertia structure of (quasi) divisors of a function field K|k over an algebraically closed base field k from the maximal pro-ℓ abelian-by-central Galois theory of K. The results play a central role in the birational anabelian geometry and related questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Artin, Geometric Algebra, Interscience, New York, 1957.

    MATH  Google Scholar 

  2. F. A. Bogomolov, On two conjectures in birational algebraic geometry, in Algebraic Geometry and Analytic Geometry, ICM-90 Satellite Conference Proceedings (A. Fujiki et al., eds.), Springer-Verlag, Tokyo, 1991, pp. 26–52.

    Google Scholar 

  3. F. A. Bogomolov and Y. Tschinkel, Commuting elements in Galois groups of function fields, in Motives, Polylogarithms and Hodge Theory (F.A. Bogomolov and L. Katzarkov, eds.), International Press, Somerville, MA, 2002, pp. 75–120.

    Google Scholar 

  4. N. Bourbaki, Algèbre commutative, Hermann, Paris, 1964.

    MATH  Google Scholar 

  5. I. Efrat, Valuations, Orderings and Milnor K-Theory, AMS Mathematical Surveys and Monographs, Vol. 124, American Mathematical Society, Providence, RI, 2006.

    MATH  Google Scholar 

  6. O. Endler and A. J. Engler, Fields with Henselian valuation rings, Mathematische Zeitschrift 152 (1977), 191–193.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. J. Engler and A. Prestel, Valued Fields, Springer Monographs in Mathematics Series, Springer-Verlag, Berlin, 2005.

    MATH  Google Scholar 

  8. L. Schneps and P. Lochak (eds.), Geometric Galois Actions I, London Mathematical Society Lecture Notes, Vol. 242, Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  9. A. Grothendieck, Letter to Faltings, June 1983; see [GGA].

    Google Scholar 

  10. A. Grothendieck, Esquisse d’un programme, 1984; see [GGA].

    Google Scholar 

  11. H. Koch, Die Galoissche Theorie der p-Erweiterungen, Math. Monogr. 10, Berlin, 1970.

  12. J. Koenigsmann, Solvable absolute Galois groups are metabelian, Inventiones Mathematicae 144 (2001), 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  13. L. Mahé, J. Mináč and T. L. Smith, Additive structure of multiplicative subgroups of fields and Galois theory, Documenta Mathematica 9 (2004), 301–355.

    MATH  MathSciNet  Google Scholar 

  14. D. Mumford, The Red Book of Varieties and Schemes, Lecture Notes in Mathematics, Vol. 1358, 2nd edition, Springer-Verlag, Berlin, 1999.

    MATH  Google Scholar 

  15. J. Neukirch, Ü ber eine algebraische Kennzeichnung der Henselkörper, Journal für die Reine und Angewandte Mathematik 231 (1968), 75–81.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of Number Fields, 2nd edition, Grundlehren der Mathematischen Wissenschaften, Vol. 323, Springer-Verlag, Berlin, 2008.

    MATH  Google Scholar 

  17. A. N. Parshin, Finiteness Theorems and Hyperbolic Manifolds, in The Grothendieck Festschrift III (P. Cartier et al., eds.), PM Series, Vol. 88, Birkhäuser, Boston, Basel, Berlin, 1990.

    Google Scholar 

  18. F. Pop, On Grothendieck’s conjecture of birational anabelian geometry, Annals of Mathematics 138 (1994), 145–182.

    Article  Google Scholar 

  19. F. Pop, Glimpses of Grothendieck’s anabelian geometry, in Geometric Galois Actions I, London Mathematical Society Lecture Notes, Vol. 242, (L. Schneps and P. Lochak eds.), Cambridge University Press, 1998, Cambridge, pp 133–126.

    Google Scholar 

  20. F. Pop, Pro-ℓ birational anabelian geometry over algebraically closed fields I, Manuscript, Bonn, 2003; see: http://arxiv.org/pdf/math.AG/0307076.

  21. F. Pop, Pro-ℓ Galois theory of Zariski prime divisors, in Luminy Proceedings Conference, SMF No 13 (Débès et al., eds.), Hérmann, Paris, 2006.

    Google Scholar 

  22. F. Pop, Recovering fields from their decomposition graphs, Manuscript, 2007; see: http://www.math.upenn.edu/~pop/Research/Papers.html.

  23. P. Roquette, Zur Theorie der Konstantenreduktion algebraischer Mannigfaltigkeiten, Journal für die Reine und Angewandte Mathematik 200 (1958), 1–44.

    Article  MATH  MathSciNet  Google Scholar 

  24. T. Szamuely, Groupes de Galois de corps de type fini (d’après Pop), Astérisque 294 (2004), 403–431.

    MathSciNet  Google Scholar 

  25. J.-P. Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics, Vol. 5, Springer-Verlag, Berlin, 1965.

    MATH  Google Scholar 

  26. K. Uchida, Isomorphisms of Galois groups of solvably closed Galois extensions, The Tôhoku Mathematical Journal 31 (1979), 359–362.

    Article  MATH  MathSciNet  Google Scholar 

  27. R. Ware, Valuation Rings and rigid Elements in Fields, Canadian Journal of Mathematics 33 (1981), 1338–1355.

    MATH  MathSciNet  Google Scholar 

  28. O. Zariski and P. Samuel, Commutative Algebra, Vol. II, Springer-Verlag, New York, 1975.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Pop.

Additional information

Supported by NSF grant DMS-0401056.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pop, F. Pro-ℓ abelian-by-central Galois theory of prime divisors. Isr. J. Math. 180, 43–68 (2010). https://doi.org/10.1007/s11856-010-0093-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-010-0093-y

Keywords

Navigation