Skip to main content
Log in

Characterization of weak convergence of Birkhoff sums for Gibbs-Markov maps

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We investigate limit theorems for Birkhoff sums of locally Hölder functions under the iteration of Gibbs-Markov maps. Aaronson and Denker have given sufficient conditions to have limit theorems in this setting. We show that these conditions are also necessary: there is no exotic limit theorem for Gibbs-Markov maps. Our proofs, valid under very weak regularity assumptions, involve weak perturbation theory and interpolation spaces. For L 2 observables, we also obtain necessary and sufficient conditions to control the speed of convergence in the central limit theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aaronson and M. Denker, Characteristic functions of random variables attracted to 1-stable laws, The Annals of Probability 26 (1998), 399–415.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Aaronson and M. Denker, A local limit theorem for stationary processes in the domain of attraction of a normal distribution, in Asymptotic Methods in Probability and Statistics with Applications (St. Petersburg, 1998), Stat. Ind. Technol., Birkhäuser Boston, Boston, MA, 2001, pp. 215–223.

    Google Scholar 

  3. J. Aaronson and M. Denker, Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps, Stochastics and Dynamics 1 (2001), 193–237.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Aaronson and B. Weiss, Remarks on the tightness of cocycles, Colloquium Mathematicum 84/85 (2000), 363–376, Dedicated to the memory of Anzelm Iwanik.

    MathSciNet  Google Scholar 

  5. N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular variation, in Encyclopedia of Mathematics and its Applications, Vol. 27, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  6. P. Billingsley, Probability and Measure, third edn., Wiley Series in Probability and Mathematical Statistics, Wiley, New York, 1995.

    MATH  Google Scholar 

  7. J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin, 1976, Grundlehren der Mathematischen Wissenschaften, No. 223.

    MATH  Google Scholar 

  8. S. Campanato, Proprietà di una famiglia di spazi funzionali, Annali della Scuola Normale Superiore di Pisa (3) 18 (1964), 137–160.

    MATH  MathSciNet  Google Scholar 

  9. M. Denker and A. Jakubowski, Stable limit distributions for strongly mixing sequences, Statistics & Probability Letters 8 (1989), 477–483.

    Article  MATH  MathSciNet  Google Scholar 

  10. W. Feller, An Introduction to Probability Theory and its Applications. Vol. II, Wiley, New York, 1966.

    MATH  Google Scholar 

  11. Y. Guivarc’h and J. Hardy, Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov, Annales de l’Institut Henri Poincaré. Probabilités et Statistiques 24 (1988), 73–98.

    MATH  MathSciNet  Google Scholar 

  12. S. Gouëzel and C. Liverani, Banach spaces adapted to Anosov systems, Ergodic Theory and Dynamical Systems 26 (2006), 189–217.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Gouëzel, Central limit theorem and stable laws for intermittent maps, Probability Theory and Related Fields 128 (2004), 82–122.

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens, Proceedings of the American Mathematical Society 118 (1993), 627–634.

    MATH  MathSciNet  Google Scholar 

  15. L. Hervé, Théorème local pour chaînes de Markov de probabilité de transition quasicompacte. Applications aux chaînes V -géométriquement ergodiques et aux modèles itératifs, Annales de l’Institut Henri Poincaré. Probabilités et Statistiques 41 (2005), 179–196.

    Article  MATH  Google Scholar 

  16. L. Hervé and F. Pène, Nagaev method via Keller-Liverani theorem, Preprint, 2008.

  17. I. A. Ibragimov, On the accuracy of approximation by the normal distribution of distribution functions of sums of independent random variables, Teoriya Veroyatnosteĭ i ee Primeneniya 11 (1966), 632–655.

    Google Scholar 

  18. I. A. Ibragimov and Y. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971, With a supplementary chapter by I. A. Ibragimov and V. V. Petrov, Translation from the Russian edited by J. F. C. Kingman.

    MATH  Google Scholar 

  19. C. T. Ionescu Tulcea and G. Marinescu, Théorie ergodique pour des classes d’opérations non complètement continues, Annals of Mathematics (2) 52 (1950), 140–147.

    Article  MathSciNet  Google Scholar 

  20. A. Jakubowski, Minimal conditions in p-stable limit theorems, Stochastic Processes and their Applications 44 (1993), 291–327.

    Article  MATH  MathSciNet  Google Scholar 

  21. T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag, New York, 1966.

    Google Scholar 

  22. G. Keller and C. Liverani, Stability of the spectrum for transfer operators, Annali della Scuola Normale Superiore di Pisa (4) 28 (1999), 141–152.

    MATH  MathSciNet  Google Scholar 

  23. J. Rousseau-Egele, Un théorème de la limite locale pour une classe de transformations dilatantes et monotones par morceaux, Annals of Probability 11 (1983), 772–788.

    Article  MATH  MathSciNet  Google Scholar 

  24. O. Sarig, Continuous phase transitions for dynamical systems, Communications in Mathematical Physics 267 (2006), 631–667.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Gouëzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gouëzel, S. Characterization of weak convergence of Birkhoff sums for Gibbs-Markov maps. Isr. J. Math. 180, 1–41 (2010). https://doi.org/10.1007/s11856-010-0092-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-010-0092-z

Keywords

Navigation