Skip to main content
Log in

Definable one dimensional structures in o-minimal theories

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

This is the first of two papers where we prove the Zil’ber trichotomy principle for one-dimensional structures definable in o-minimal ones.

Here we prove: Let N be a definable structure in an o-minimal structure M, with dim M (N) = 1. If N is stable then it is necessarily 1-based. Along the way, we develop a fine intersection theory for definable curves in o-minimal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Bouscaren, The group configuration—after E. Hrushovski, in The Model Theory of groups (Notre Dame, IN, 1985–1987), Volume 11 of Notre Dame Math. Lectures, Univ. Notre Dame Press, Notre Dame, 1989, pp. 199–209.

    Google Scholar 

  2. E. Brieskorn and H. Knörrer, Plane Algebraic Curves, Birkhäuser Verlag, Basel, 1986. Translated from the German by John Stillwell.

    MATH  Google Scholar 

  3. S. Buechler, Essential Stability Theory, Springer, Berlin, 1996.

    MATH  Google Scholar 

  4. G. Cherlin and S. Shelah, Superstable fields and groups, Annals of Mathematical Logic 18 (1980), 227–270.

    Article  MathSciNet  Google Scholar 

  5. L. van den Dries, Tame Topology and o-Minimal Structures, London Mathematical Society Lecture Note Series 248 Cambridge University Press, Cambridge, 1998.

    Book  MATH  Google Scholar 

  6. L. van den Dries, A remark on limit sets, 2006.

  7. M. J. Edmundo, Solvable groups definable in o-minimal structures, Journal of Pure and Applied Algebra 185 (2003), 103–145

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Gagelman, Stability in geometric theories, Annals of Pure and Applied Logic 132 (2005), 313–326.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Hasson and P. Kowalski, Strongly minimal expansions of (ℂ, +) definable in o-minimal fields, Proceedings of the London Mathematical Society. Third Series 97 (2008), 117–154.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Hasson and A. Onshuus, Minimal types in super dependent theories, arXiv:0711.0122, 2008.

  11. E. Hrushovski, Unidimensional theories. An introduction to geometric stability theory, in Logic Colloquium’ 87 (Granda 1987) (H. D. Ebbinghaus et al. eds.), North-Holland, Amsterdam, 1989, pp. 73–103.

    Chapter  Google Scholar 

  12. E. Hrushovski, Strongly minimal expansions of algebraically closed fields, Israel Journal of Mathematics 79 (1992), 129–151.

    Article  MATH  MathSciNet  Google Scholar 

  13. E. Hrushovski, A new strongly minimal set, Annals of Pure and Applied Logic 62 (1993) 147–166.

    Article  MATH  MathSciNet  Google Scholar 

  14. E. Hrushovski and A. Pillay, Groups definable in local fields and pseudo-finite fields, Israel Journal of Mathematics 85 (1994), 203–262.

    Article  MATH  MathSciNet  Google Scholar 

  15. E. Hrushovski and B. Zilber, Zariski geometries, Journal of the American Mathematical Society 9 (1996), 1–55.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Onshuus, Properties and consequences of thorn-independence, Journal of Symbolic Logic 71 (2006), 1–21.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Otero, Y. Peterzil and A. Pillay, On groups and rings definable in o-minimal expansions of real closed fields, Bulletin of the London Mathematical Society 28 (1996), 7–14.

    Article  MATH  MathSciNet  Google Scholar 

  18. Y. Peterzil, A. Pillay, and S. Starchenko, Simple algebraic and semialgebraic groups over real closed fields, Transactions of the American Mathematical Society 352 (2000), 4421–4450 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  19. Y. Peterzil and S. Starchenko, A trichotomy theorem for o-minimal structures, Proceedings of the London Mathematical Society. Third Series 77 (1998), 481–523.

    Article  MathSciNet  Google Scholar 

  20. Y. Peterzil and S. Starchenko, Expansions of algebraically closed fields in o-minimal structures, Selecta Mathematica. New Series 7 (2001), 409–445.

    Article  MATH  MathSciNet  Google Scholar 

  21. Y. Peterzil and S. Starchenko, Complex analytic geometry and analytic-geometric categories, Journal für die Reine und Angewandte Mathematik (Crelle’s Journal) 626 (2009), 39–74.

    Article  MATH  MathSciNet  Google Scholar 

  22. Y. Peterzil and C. Steinhorn. Definable compactness and definable subgroups of ominimal groups, Journal of the London Mathematical Society. Second Series 59 (1999), 769–786.

    Article  MathSciNet  Google Scholar 

  23. A. Pillay, On groups and fields definable in o-minimal structures, Journal of Pure and Applied Algebra 53 (1988), 239–255.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Pillay, Geometric stability theory, Oxford Logic Guides, Oxford Science Publications, Vol. 32, The Clarendon Press Oxford University Press, New York, 1996.

    Google Scholar 

  25. E. D. Rabinovich, Definability of a field in sufficiently rich incidence systems, QMW Maths Notes, Vol. 14, Queen Mary and Westfield College School of Mathematical Sciences, London, 1993. With an introduction by Wilfrid Hodges.

    Google Scholar 

  26. B. Zilber, Uncountably Categorical Theories, Vol. 117, Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1993.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assaf Hasson.

Additional information

Supported by the EPSRC grant no. EP C52800X 1.

Partially supported by the EC FP6 through the Marie Curie Research Training Network MODNET (MRTN-CT-2004-512234).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasson, A., Onshuus, A. & Peterzil, Y. Definable one dimensional structures in o-minimal theories. Isr. J. Math. 179, 297–361 (2010). https://doi.org/10.1007/s11856-010-0084-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-010-0084-z

Keywords

Navigation