Skip to main content
Log in

On extending Pollard’s theorem for t-representable sums

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let t ≥ 1, let A and B be finite, nonempty subsets of an abelian group G, and let \( A\mathop + \limits_i B \) denote all the elements c with at least i representations of the form c = a + b, with aA and bB. For |A|, |B| ≥ t, we show that either

$$ \sum\limits_{i = 1}^t {|A\mathop + \limits_i B| \geqslant t|A| + t|B| - 2t^2 + 1,} $$
((1))

or else there exist A′ ⫅ A and B′ ⫅ B with

$$ \begin{gathered} l: = |A\backslash A'| + |B\backslash B'| \leqslant t - 1, \hfill \\ A'\mathop + \limits_i B' = A' + B' = A\mathop + \limits_i B,and \hfill \\ \sum\limits_{i = 1}^t {|A\mathop + \limits_i B| \geqslant t|A| + t|B| - (t - l)(|H| - \rho ) - tl \geqslant t|A| + t|B| - t|H|,} \hfill \\ \end{gathered} $$

where H is the (nontrivial) stabilizer of \( A\mathop + \limits_t B \) and

$$ \rho = |A' + H| - |A'| + |B' + H| - |B'|. $$

This gives a version of Pollard’s Theorem for general abelian groups in the tradition of Kneser’s Theorem. The proof makes use of additive energy and other recent advances in employing the Dyson transform. Two examples are given that show that such a Kneser-type result cannot hold when the bound in (1) is extended to the original bound of Pollard (for t ≥ 3), and that reduction present in (1) is of the correct order of magnitude (quadratic in t). However, in the case t = 2, we improve (1) to \( |A\mathop + \limits_1 B| + |A\mathop + \limits_2 B| \geqslant 2|A| + 2|B| - 4 \), which answers the abelian case of a question of Dicks and Ivanov related to extensions of the Hanna Neumann Conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Caldeira and J. A. Dias da Silva, A Pollard type result for restricted sums, Journal of Number Theory 72 (1998), 153–173.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. L. Cauchy, Recherches sur les Nombres, Journal de l’Ècole Polytechnique 9(1813), 99–123.

  3. I. Chowla, A theorem on the addition of residue classes: Application to the number Γ(k) in Waring’s problem, Proceedings of the Indian Academy of Science, Section A 1 (1935), 242–243.

    Google Scholar 

  4. H. Davenport, On the addition of residue classes, Journal of the London Mathematical Society 10 (1935), 30–32.

    Article  MATH  Google Scholar 

  5. J. A. Dias da Silva, Linear Algebra and Additive Theory, in Unusual Applications of Number Theory, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., Vol. 64, American Mathematical Society, Providence, RI, 2004, pp. 61–69.

    Google Scholar 

  6. W. Dicks, Open problem session at the 2008 DocCourse in Additive Combinatorics, Barcelona, Spain, 14 February, 2008.

  7. W. Dicks and S. V. Ivanov, On the intersection of free subgroups in free products of groups, Mathematical Proceedings of the Cambridge Philosophical Society 144 (2008), 511–534.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Geroldinger, and F. Halter-Koch, Non-unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics (Boca Raton), Vol. 278, Chapman & Hall/CRC, Boca Raton, FL, 2006.

    Google Scholar 

  9. B. Green and I. Ruzsa, Sums-free sets in abelian groups, Israel Journal of Mathematics 147 (2005), 157–188.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. J. Grynkiewicz, A step beyond Kemperman’s structure theoem, Mathematika, to appear.

  11. D. J. Grynkiewicz, Sumsets, zero-sums and extremal combinatorics, Ph.D. Dissertation, Caltech, 2005.

  12. Y. Hamidoune and O. Serra, A note on Pollard’s Theorem, manuscript.

  13. J. H. B. Kemperman, On small sumsets in an abelian group, Acta Mathematica 103 (1960), 63–88.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Kneser, Abschätzung der asymptotischen Dichte von Summenmengen, Mathematische Zeitschrift 58 (1953), 459–484.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Kneser, Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen, Mathematische Zeitschrift 64 (1955), 429–434.

    MathSciNet  Google Scholar 

  16. M. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Graduate Texts in Mathematics, Vol. 165, Springer-Verlag, New York, 1996.

    Google Scholar 

  17. E. Nazarewicz, M. O’Brien, M. O’Neill, and C. Staples, Equality in Pollard’s Theorem on Set Addition of Congruence Classes, Acta Arithmetica 127 (2007), 1–15.

    Article  MATH  MathSciNet  Google Scholar 

  18. H. Neumann, On the intersection of finitely generated free groups, Publicationes Mathematicae Debrecen 4 (1956), 186–189.

    MATH  MathSciNet  Google Scholar 

  19. J. M. Pollard, A Generalisation of the Theorem of Cauchy and Davenport, Journal of the London Mathematical Society (2) 8 (1974), 460–462.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. M. Pollard, Addition properties of residue classes, Journal of the London Mathematical Society (2) 11 (1975), 147–152.

    Article  MATH  MathSciNet  Google Scholar 

  21. T. Tao and V. Vu, Additive Combinatorics, Cambridge Studies in Advanced Mathematics, Vol. 105, Cambridge University Press, Cambridge, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Grynkiewicz.

Additional information

Supported in part by the Austrian Science Fund FWF (Project Number M1014- N13).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grynkiewicz, D.J. On extending Pollard’s theorem for t-representable sums. Isr. J. Math. 177, 413–439 (2010). https://doi.org/10.1007/s11856-010-0053-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-010-0053-6

Keywords

Navigation