Skip to main content
Log in

Random sampling of bandlimited functions

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider the problem of random sampling for bandlimited functions. When can a bandlimited function f be recovered from randomly chosen samples f(x j ), jJ ⊂ ℕ? We estimate the probability that a sampling inequality of the form

$$ A\left\| f \right\|_2^2 \leqslant \sum\limits_{j \in J} {|f(x_j )|^2 \leqslant B\left\| f \right\|_2^2 } $$

hold uniformly for all functions fL 2(ℝd) with supp \( \hat f \subseteq [ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2},{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}]^d \) or for some subset of bandlimited functions.

In contrast to discrete models, the space of bandlimited functions is infinite-dimensional and its functions “live“ on the unbounded set ℝd. These facts raise new problems and leads to both negative and positive results.

  1. (a)

    With probability one, the sampling inequality fails for any reasonable definition of a random set on ℝd, e.g., for spatial Poisson processes or uniform distribution over disjoint cubes.

  2. (b)

    With overwhelming probability, the sampling inequality holds for certain compact subsets of the space of bandlimited functions and for sufficiently large sampling size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. F. Bass and K. Gröchenig, Random sampling of multivariate trigonometric polynomials, SIAM Journal on Mathematical Analysis 36 (2004/05), 773–795 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  2. G. Bennett, Probability inequalities for the sum of independent random variables, Journal of the American Statistical Association 57 (1962), 33–45.

    Article  MATH  Google Scholar 

  3. A. Beurling, Local harmonic analysis with some applications to differential operators, in Some Recent Advances in the Basic Sciences, Vol. 1 (Proc. Annual Sci. Conf., Belfer Grad. School Sci., Yeshiva Univ., New York, 1962–1964), Belfer Graduate School of Science, Yeshiva Univ., New York, 1966, pp. 109–125.

    Google Scholar 

  4. R. P. Boas, Jr, Entire Functions, Academic Press, New York, 1954.

    MATH  Google Scholar 

  5. V. I. Buslaev and A. G. Vituškin, An estimate of the length of a signal code with a finite spectrum in connection with sound transcription problems, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 867–895.

    MathSciNet  Google Scholar 

  6. E. J. Candès, J. Romberg and T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Transaction on Information Theory 52 (2006), 489–509.

    Article  Google Scholar 

  7. E. J. Candès, J. K. Romberg and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Communications on Pure and Applied Mathematics 59 (2006), 1207–1223.

    Article  MATH  MathSciNet  Google Scholar 

  8. B. Carl and I. Stephani, Entropy, Compactness and the Approximation of Operators, Volume 98 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  9. G. Chistyakov and Y. Lyubarskii, Random perturbations of exponential Riesz bases in L 2(−π, π), Annales de l’Institut Fourier (Grenoble) 47 (1997), 201–255.

    MATH  MathSciNet  Google Scholar 

  10. G. Chistyakov, Y. Lyubarskii and L. Pastur, On completeness of random exponentials in the Bargmann-Fock space, Journal of Mathematical Physics 42 (2001), 3754–3768.

    Article  MATH  MathSciNet  Google Scholar 

  11. F. Cucker and S. Smale, On the mathematical foundations of learning, American Mathematical Society. Bulletin (New Series) 39 (2002), 1–49 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  12. R. M. Dudley, Sample functions of the Gaussian process, The Annals of Probability 1 (1973), 66–103.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Transactions of the American Mathematical Society 72 (1952), 341–366.

    MATH  MathSciNet  Google Scholar 

  14. W. H. J. Fuchs, On the eigenvalues of an integral equation arising in the theory of bandlimited signals, Journal of Mathematical Analysis and Applications 9 (1964), 317–330.

    Article  MATH  MathSciNet  Google Scholar 

  15. K. Gröchenig, B. Pötscher and H. Rauhut, Learning trigonometric polynomials from random samples and exponential inequalities for eigenvalues of random matrices, preprint, 2007.

  16. K. Gröchenig and H. Razafinjatovo, On Landau’s necessary density conditions for sampling and interpolation of band-limited functions, Journal of the London Mathematical Society 54 (1996), 557–565.

    MATH  Google Scholar 

  17. D. Jagerman, ɛ-entropy and approximation of bandlimited functions, SIAM Journal on Applied Mathematics 17 (1969), 362–377.

    Article  MATH  MathSciNet  Google Scholar 

  18. H. Landau, On the density of phase space expansions, IEEE Transactions on Information Theory 39 (1993), 1152–1156.

    Article  MATH  Google Scholar 

  19. H. J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Mathematica 117 (1967), 37–52.

    Article  MATH  MathSciNet  Google Scholar 

  20. H. J. Landau and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty. II, Bell System Technical Journal 40 (1961), 65–84.

    MATH  MathSciNet  Google Scholar 

  21. H. J. Landau and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty. III. The dimension of the space of essentially time- and band-limited signals, Bell System Tech. J. 41 (1962), 1295–1336.

    MATH  MathSciNet  Google Scholar 

  22. H. J. Landau and H. Widom, Eigenvalue distribution of time and frequency limiting, Journal of Mathematical Analysis and Applications 77 (1980), 469–481.

    Article  MATH  MathSciNet  Google Scholar 

  23. B. Y. Levin, Lectures on Entire Functions, American Mathematical Society, Providence, RI, 1996. In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko. Translated from the Russian manuscript by V. Tkachenko.

    MATH  Google Scholar 

  24. G. G. Lorentz, Approximation of Functions, Holt, Rinehart and Winston, New York, 1966.

    MATH  Google Scholar 

  25. S. Mendelson and A. Pajor, On singular values of matrices with independent rows, Bernoulli 12 (2006), 761–773.

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Pinkus, n-Widths in Approximation Theory, Volume 7 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Springer-Verlag, Berlin, 1985.

    Google Scholar 

  27. T. Poggio and S. Smale, The mathematics of learning: dealing with data, Notices of the American Mathematical Society 50 (2003), 537–544.

    MATH  MathSciNet  Google Scholar 

  28. D. Potts, G. Steidl and M. Tasche, Fast Fourier transforms for nonequispaced data: a tutorial, in Modern Sampling Theory, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Boston, MA, 2001, pp. 247–270.

    Google Scholar 

  29. K. Seip, Interpolation and Sampling in Spaces of Analytic Functions, Volume 33 of University Lecture Series, American Mathematical Society, Providence, RI, 2004.

    Google Scholar 

  30. K. Seip and A. M. Ulanovskii, Random exponential frames, Journal of the London Mathematical Society 53 (1996), 560–568.

    MATH  MathSciNet  Google Scholar 

  31. D. Slepian, Prolate spheroidal wave functions, Fourier analysis and uncertainity. IV. Extensions to many dimensions; generalized prolate spheroidal functions, Bell System Technical Journal (1964), 3009–3057.

  32. D. Slepian, On bandwidth, IEEE. Proceedings 64 (1976), 3009–3057.

    Article  MathSciNet  Google Scholar 

  33. D. Slepian and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty. I, Bell System Technical Journal 40 (1961), 43–63.

    MATH  MathSciNet  Google Scholar 

  34. S. Smale and D.-X. Zhou, Shannon sampling and function reconstruction from point values, American Mathematical Society. Bulletin (New Series) 41 (2004), 279–305 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  35. H. Widom, Asymptotic behavior of the eigenvalues of certain integral equations. II, Archive for Rational Mechanics and Analysis 17 (1964), 215–229.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard F. Bass.

Additional information

R.B. was partially supported by NSF Grant DMS0601783.

K.G. was supported by the Marie-Curie Excellence Grant MEXT-CT-2004-517154.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bass, R.F., Gröchenig, K. Random sampling of bandlimited functions. Isr. J. Math. 177, 1–28 (2010). https://doi.org/10.1007/s11856-010-0036-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-010-0036-7

Keywords

Navigation