Skip to main content
Log in

Minimal systems of arbitrary large mean topological dimension

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let G be a countable amenable group and P a polyhedron. The mean topological dimension mdim(X,G) of a subshift XP G is a real number satisfying 0 ≤ mdim(X,G) ≤ dim(P), where dim(P) denotes the usual topological dimension of P. We give a construction of minimal subshifts XP G with mean topological dimension arbitrarily close to dim(P).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Auslander, Minimal Flows and their Extensions, North-Holland Mathematics Studies 153, Elsevier Science Publishers, Amsterdam, 1988.

    Google Scholar 

  2. M. Coornaert, Dimension topologique et systèmes dynamiques, Cours spécialisés 14, Société Mathématique de France, Paris, 2005.

    Google Scholar 

  3. M. Coornaert and F. Krieger, Mean topological dimension for actions of discrete amenable groups, Discrete and Continuous Dynamical Systems. Series A 13 (2005), 779–793.

    Article  MathSciNet  Google Scholar 

  4. E. Følner, On groups with full Banach mean value, Mathematica Scandinavica 3 (1955), 245–254.

    MathSciNet  Google Scholar 

  5. F. P. Greenleaf, Invariant Means on Topological Groups and their Applications, Van Nostrand Mathematical Studies 16, Van Nostrand Reinhold Co., New York, 1969.

    Google Scholar 

  6. M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps, Part I, Mathematical Physics, Analysis and Geometry 2 (1999), 323–415.

    Article  MathSciNet  Google Scholar 

  7. W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, Princeton, 1948.

    MATH  Google Scholar 

  8. A. Jaworski, The Kakutani-Bebutov Theorem for Groups, Ph.D Thesis, University of Maryland, College Park, 1974.

    Google Scholar 

  9. S. Kakutani, A Proof of Beboutov’s Theorem, Journal of Differential Equations 4 (1968), 194–201.

    Article  MathSciNet  Google Scholar 

  10. F. Krieger, Groupes moyennables, dimension topologique moyenne et sous-décalages, Geometriae Dedicata 122 (2006), 15–31.

    Article  MathSciNet  Google Scholar 

  11. E. Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Institut des Hautes Études Scientifiques. Publications Mathématiques 89 (1999), 227–262 (2000).

    Article  MathSciNet  Google Scholar 

  12. E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel Journal of Mathematics 115 (2000), 1–24.

    Article  MathSciNet  Google Scholar 

  13. D. S. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, Journal d’Analyse Mathématique 48 (1987), 1–141.

    Article  MathSciNet  Google Scholar 

  14. A. Paterson, Amenability, Mathematical Surveys and Monographs 29, American Mathematical Society, Providence, RI, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Krieger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krieger, F. Minimal systems of arbitrary large mean topological dimension. Isr. J. Math. 172, 425–444 (2009). https://doi.org/10.1007/s11856-009-0081-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-009-0081-2

Keywords

Navigation