Skip to main content
Log in

Proper actions of lie groups of dimension n 2 + 1 on n-dimensional complex manifolds

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we continue to study actions of high-dimensional Lie groups on complex manifolds. We give a complete explicit description of all pairs (M,G), where M is a connected complex manifold of dimension n ≥ 2 and G is a connected Lie group of dimension n 2 +1 acting effectively and properly on M by holomorphic transformations. This result complements a classification obtained earlier by the first author for n 2 + 2 ≤ dimG < n 2 + 2n and a classical result due to W. Kaup for the maximal group dimension n 2 + 2n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. N. Akhiezer, Lie Group Actions in Complex Analysis, Aspects in Mathematics, Vieweg, Braunschweig, Weisbaden, 1995.

    MATH  Google Scholar 

  2. D. V. Alekseevsky, On perfect actions of Lie groups, Russian Mathematical Surveys 34 (1979), 215–216.

    MathSciNet  Google Scholar 

  3. H. Biller, Proper actions on cohomology manifolds, Transactions of the American Mathematical Society 355 (2002), 407–432.

    MathSciNet  MATH  Google Scholar 

  4. S. Bochner, Compact groups of differentiable transformations, Annals of Mathematics 46 (1945), 372–381.

    MathSciNet  MATH  Google Scholar 

  5. S. Bochner and D. Montgomery, Groups of differentiable and real or complex analytic transformations, Annals of Mathematics 46 (1945), 685–694.

    MathSciNet  MATH  Google Scholar 

  6. S. Bochner and D. Montgomery, Locally compact groups of differentiable transformations, Annals of Mathematics 47 (1946), 639–653.

    MathSciNet  MATH  Google Scholar 

  7. E. M. Chirka, Variations of Hartogs’ theorem, Proceedings of the Steklov Institute of Mathematics 253 (2006), 212–220.

    MathSciNet  MATH  Google Scholar 

  8. E. Cartan, Leçons sur la Géométrie des Espaces de Riemann, Gauthier-Villars, Paris, 1928.

    MATH  Google Scholar 

  9. I. P. Egorov, On a strengthening of Fubini’s theorem on the order of the group of motions of a Riemannian space, (Russian), Doklady Akad. Nauk SSSR (N.S.) 66 (1949), 793–796.

    MathSciNet  Google Scholar 

  10. L. P. Eisenhart, Continuous Groups of Transformations, Princeton University Press, Princeton, 1933.

    MATH  Google Scholar 

  11. G. Fubini, Sugli spazii che ammettono un gruppo continou di movementi, Annali di Matematica Pura ed Applicata (3) 8 (1903), 39–81.

    MATH  Google Scholar 

  12. M. Goto and F. Grosshans, Semisimple Lie Algebras, Lecture Notes in Pure and Applied Mathematics, vol. 38, Marcel Dekker, Inc., New York, Basel, 1978.

    Google Scholar 

  13. S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York-London, 1962.

    MATH  Google Scholar 

  14. A. T. Huckleberry and E. L. Livorni, A classification of homogeneous surfaces, Canadian Journal of Mathematics 33 (1981), 1097–1110.

    MathSciNet  MATH  Google Scholar 

  15. A. V. Isaev, Hyperbolic manifolds of dimension n with automorphism group of dimension n 2-1, The Journal of Geometric Analysis 15 (2005), 239–259.

    MathSciNet  MATH  Google Scholar 

  16. A. V. Isaev, Hyperbolic 2-dimensional manifolds with 3-dimensional automorphism group, Geometry and Topology 12 (2008), 643–711. available in http://front.math.ucdavis.edu/math.CV/0509030.

    MathSciNet  MATH  Google Scholar 

  17. A. V. Isaev, Hyperbolic n-dimensional manifolds with automorphism group of dimension n2, Geometric and Functional Analysis 17 (2007), 192–219.

    MathSciNet  MATH  Google Scholar 

  18. A. V. Isaev, Lectures on the Automorphism Groups of Kobayashi-Hyperbolic Manifolds, Lecture Notes in Math., vol. 1902, Springer, Berlin, 2007.

    Google Scholar 

  19. A. V. Isaev, Proper actions of high-dimensional groups on complex manifolds, The Journal of Geometric Analysis 17 (2007), 649–667.

    MathSciNet  MATH  Google Scholar 

  20. A. V. Isaev, Complex manifolds admitting proper actions of high-dimensional groups, Journal of Lie Theory 18 (2008), 141–160.

    MathSciNet  MATH  Google Scholar 

  21. A. V. Isaev and S. G. Krantz, On the automorphism groups of hyperbolic manifolds, Journal für die Reine und Angewandte Mathematik 534 (2001), 187–194.

    MathSciNet  MATH  Google Scholar 

  22. A. V. Isaev and N. G. Kruzhilin, Effective actions of the unitary group on complex manifolds, Canadian Journal of Mathematics 54 (2002), 1254–1279.

    MathSciNet  MATH  Google Scholar 

  23. S. Ishihara, Homogeneous Riemannian spaces of four dimensions, Journal of the Mathematical Society of Japan 7 (1955), 345–370.

    MathSciNet  MATH  Google Scholar 

  24. W. Kaup, Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen, Inventiones Mathematicae 3 (1967), 43–70.

    MathSciNet  MATH  Google Scholar 

  25. S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970.

    MATH  Google Scholar 

  26. S. Kobayashi, Transformation Groups in Differential Geometry, Springer-Verlag, New York-Heidelberg, 1972.

    MATH  Google Scholar 

  27. S. Kobayashi and T. Nagano, Riemannian manifolds with abundant isometries, in Differential Geometry (in Honor of Kentaro Yano), Kinokuniya, Tokyo, 1972, pp. 195–219.

    Google Scholar 

  28. N. Kuiper, Groups of motions of order \( \tfrac{1} {2}n(n - 1) + 1 \)in Riemannian n-spaces, Koninklijke Nederlandse Akademie vanWetenschappen. Indagationes Mathematicae 18 (1956), 313–318.

    MathSciNet  MATH  Google Scholar 

  29. J. L. Koszul, Sur la forme hermitienne canonique des espaces homogènes complexes, Canadian Journal of Mathematics 7 (1955), 562–576.

    MathSciNet  MATH  Google Scholar 

  30. D. Montgomery and L. Zippin, Topological Transformation Groups, Interscience Publishers, Inc., New York, 1955.

    MATH  Google Scholar 

  31. S. B. Myers and N. Steenrod, The group of isometries of a Riemannian manifold, Annals of Mathematics 40 (1939), 400–416.

    MathSciNet  MATH  Google Scholar 

  32. M. Obata, On n-dimensional homogeneous spaces of Lie groups of dimension greater than n(n-1)/2, Journal of the Mathematical Society of Japan 7 (1955), 371–388.

    MathSciNet  MATH  Google Scholar 

  33. K. Oeljeklaus and W. Richthofer, Homogeneous complex surfaces, Mathematische Annalen 268 (1984), 273–292.

    MathSciNet  MATH  Google Scholar 

  34. A. Onishchik, Topology of Transitive Transformation Groups, Johann Ambrosius Barth Verlag GmbH, Leipzig, 1994.

    MATH  Google Scholar 

  35. A. Onishchik and E. Vinberg, Lie Groups and Algebraic Groups, Springer-Verlag, Berlin, 1990.

    MATH  Google Scholar 

  36. R. S. Palais, On the existence of slices for actions of non-compact Lie groups, 73 (1961), 295–323.

    Google Scholar 

  37. V. Patrangenaru, Classifying 3 and 4 dimensional homogeneous Riemannian manifolds by Cartan triples, Pacific Journal of Mathematics 173 (1996), 511–532.

    MathSciNet  MATH  Google Scholar 

  38. I. Satake, Algebraic Structures of Symmetric Domains, Kanô Memorial Lect., 4, Princeton University Press, Princeton, 1980.

    Google Scholar 

  39. H.-C. Wang, On Finsler spaces with completely integrable equations of Killing, Journal of the London Mathematical Society 22 (1947), 5–9.

    MathSciNet  MATH  Google Scholar 

  40. J. Winkelmann, The Classification of Three-Dimensional Homogeneous Complex Manifolds, Lecture Notes in Math., vol 1602, Springer-Verlag, Berlin, 1995.

    Google Scholar 

  41. K. Yano, On n-dimensional Riemannian spaces admitting a group of motions of order n(n-1)/2+1, Transactions of the American Mathematical Society 74 (1953), 260–279.

    MathSciNet  MATH  Google Scholar 

  42. K. Yano, The Theory of Lie Derivatives and its Applications, North-Holland Publishing Co., P. Noordhoff Ltd., Interscience Publishers Inc., New York, 1957.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Isaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaev, A.V., Kruzhilin, N.G. Proper actions of lie groups of dimension n 2 + 1 on n-dimensional complex manifolds. Isr. J. Math. 172, 193–252 (2009). https://doi.org/10.1007/s11856-009-0071-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-009-0071-4

Keywords

Navigation