Skip to main content
Log in

New higher-order equiaffine invariants

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We introduce new affine invariants for smooth convex bodies. Some sharp affine isoperimetric inequalities are established for the new invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Alesker, Continuous rotation invariant valuations on convex sets, Annals of Mathematics 149 (1999), 977–1005.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Alesker, Description of translation invariant valuations on convex sets with a solution of P. McMullen’s conjecture, Geometric and Functional Analysis 11 (2001), 244–272.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Alesker, Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily invariant valuations, Journal of Differential Geometry 63 (2003), 63–95.

    MATH  MathSciNet  Google Scholar 

  4. B. Andrews, Contraction of convex hypersurfaces by their affine normal, Journal of Differential Geometry 43 (1996), 207–230.

    MATH  MathSciNet  Google Scholar 

  5. I. Bárány, Random points, convex bodies, lattices, Proceedings International Congress of Mathematicians, vol. III, Beijing, 2002, pp. 527–536.

    Google Scholar 

  6. W. Blaschke, Vorlesungen über Differentialgeometrie II, Affine Differentialgeometrie, Springer Verlag, Berlin, 1923.

    MATH  Google Scholar 

  7. C. Dupin, Application de Géometrie et de Méchanique à la Marine, au Ponts et Chaussées, Bachelier, Paris, 1822.

    Google Scholar 

  8. P. Gruber, Aspects of approximation of convex bodies, in Handbook of Convex Geometry vol. A, North Holland, Amsterdam, 1993, pp. 321–345.

    Google Scholar 

  9. D. Klain, Invariant valuations on star shaped sets, Advances in Mathematics 125 (1997), 95–113.

    Article  MATH  MathSciNet  Google Scholar 

  10. K. Leichtweiss, Zur Affinoberfläche konvexer Körper, Manuscripta Mathematica 56 (1986), 429–464.

    Article  MATH  MathSciNet  Google Scholar 

  11. K. Leichtweiss, Convexity and Differential Geometry, in Handbook of Convex Geometry, North-Holland, Amsterdam, 1993, pp. 1045–1080.

    Google Scholar 

  12. K. Leichtweiss, Affine Geometry of Convex bodies, Johann Ambrosius Barth Verlag, Heidelberg, 1998.

    MATH  Google Scholar 

  13. A. M. Li, U. Simon and G. S. Zhao Global affine differential geometry of hypersurfaces, Walter de Gruyter & Co., Berlin, 1993.

    MATH  Google Scholar 

  14. M. Ludwig and M. Reitzner, A Characterization of Affine Surface Area, Advances in Mathematics 147 (1999), 138–172.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Ludwig, Ellipsoids and matrix-valued valuations, Duke Mathematical Journal 119 (2003), 159–188.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Ludwig, Minkowski valuations, Transactions of the American Mathematical Society 357 (2005), 4191–4213.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Ludwig, C. Schuttand E. Werner, Approximation of the Euclidean ball by polytopes, Studia Mathematica 173 (2006), 1–18.

    Article  MATH  MathSciNet  Google Scholar 

  18. E. Lutwak, Extended affine surface area, Advances in Mathematics 85 (1991), 39–68.

    Article  MATH  MathSciNet  Google Scholar 

  19. E. Lutwak, The Brunn-Minkowski-Fiery theory II: Affine and geominimal surface areas, Advances in Mathematics 118 (1996), 244–294.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Meyer and S. Reisner, A geometric property of the boundary of symmetric convex bodies and convexity of flotation surfaces, Geometria Dedicata 37 (1991), 327–337.

    MATH  MathSciNet  Google Scholar 

  21. M. Meyer and E. Werner, The Santaló-regions of a convex body, Transactions of the American Mathematical Society 350 (1998), 4569–4591.

    Article  MATH  MathSciNet  Google Scholar 

  22. C. M. Petty, Affine Isoperimetric Problems, in Discrete Geometry and Convexity (J. E. Goodman, E. Lutwak, J. Malkevitch, R. Pollack, eds.) Proc. Conf. New York 1982, Annals New York Acad. Sci. 440 (1985), 113–127.

  23. G. Sapiro and A. Tannenbaum, On affine plane curve evolution, Journal of Functional Analysis 119 (1994), 79–120.

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Sapiro, Geometric partial differential equations and image analysis, Cambridge Univ. Press, Cambridge, 2006.

    MATH  Google Scholar 

  25. R. Schneider, Convex bodies: The Brunn-Minkowski theory, Cambridge Univ. Press, New York, 1993.

    MATH  Google Scholar 

  26. C. Schutt and E. Werner, The convex floating body, Mathematica Scandinavica 66 (1990), 275–290.

    MathSciNet  Google Scholar 

  27. C. Schutt and E. Werner, Random polytopes of points chosen from the boundary of a convex body. GAFA Seminar Notes, Lecture Notes in Mathematics 1807, Springer-Verlag, 2003, pp. 241–422.

  28. A. Stancu, New characterizations of ellipsoids, preprint, 2007.

  29. N. S. Trudinger and Xu-Jia Wang, The Affine Plateau Problem, Journal of the American Mathematical Society 18 (2005), 253–289.

    Article  MATH  MathSciNet  Google Scholar 

  30. Xu-Jia Wang, Affine maximal hypersurfaces, in Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), Higher Ed. Press, Beijing, 2002, pp. 221–231.

    Google Scholar 

  31. E. Werner, Illumination bodies and affine surface area, Studia Mathematica 110 (1994), 257–269.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Stancu.

Additional information

Partially supported by an NSERC grant and an FRDP grant.

Partially supported by an NSF grant, an FRG-NSF grant and a BSF grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stancu, A., Werner, E. New higher-order equiaffine invariants. Isr. J. Math. 171, 221–235 (2009). https://doi.org/10.1007/s11856-009-0048-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-009-0048-3

Keywords

Navigation