Skip to main content
Log in

On pair correlations and Hausdorff dimension

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider a system of “generalised linear forms” defined at a point x = (x (i, j)) in a subset of R d by

$$ L_i (x)(k) = \sum\limits_{j = 1}^{d_i } {g_{(i,j),k} (x_{(i,j)} )} \in R, i = 1,2, \ldots $$

for k ≥ 1. Here d = d 1 + ⋯ + d l and for each pair of integers (i, j) ∈ D, where D = {(i, j): 1 ≤ il, 1 ≤ jd i } the sequence of functions (g (i, j), k (x)) k=1 are differentiable on an interval X ij contained in R. We study the distribution of the sequence on the l-torus defined by the fractional parts X k (x) = ({ L 1(x)(k)}, ..., {L l (x)(k)}) ∈ T l, for typical x in the Cartesian product \( X = \prod\nolimits_{i = 1}^l {\prod\nolimits_{j = 1}^{d_i } {X_{ij} \subseteq R^d } } \). More precisely, let R = I 1 × ⋯ × I l be a rectangle in T l and for each N ≥ 1 define a pair correlation function

$$ V_N (R)(x) = \sum\limits_{1 \leqslant n \ne m \leqslant N} {\chi _R } (X_n (x) - X_m (x)) $$

and a discrepancy \( \Delta _N (x) = \sup _{R \subseteq {\rm T}^l } \{ V_N (R)(x) - N(N - 1) leb(R)\} \), where the supremum is over all rectangles in T l and χ R is the characteristic function of the set R. We give conditions on (g (i, j), k (x)) k=1 to ensure that given ε > 0, for almost every xT l we have Δ N (x) = o(N(log N)l+∈). Under related conditions on(g (i, j), k (x)) k =1 we calculate for appropriate β ∈ (0, 1) the Hausdorff dimension of the set {x : lim sup N→∞ N β Δ N (x > 0)}. Our results complement those of Rudnick and Sarnak and Berkes, Philipp, and Tichy in one dimension and M. Pollicott and the author in higher dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Arkhipov, V. N. Chubarikov and A. A. Karatsuba, Trigonometric Sums in Number Theory and Analysis, De Gruyter Expositions in Mathematics 39, Berlin, 2004.

  2. I. Berkes, W. Philipp and R. Tichy, Pair correlation and U-statistics for independent and weakly dependent random variables, Illinois Journal of Mathematics 45 (2001), 559–580.

    MATH  MathSciNet  Google Scholar 

  3. J. W. S. Cassels, Some metrical theorems on diophantine approximation II, Journal of the London Mathematical Society 25 (1950), 180–184.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Drmota and R. F. Tichy, Sequence, Discrepancies and Applications, Lecture Notes in Mathematics 1651, Springer-Verlag, Berlin, 1997.

    Google Scholar 

  5. K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  6. I. S. Gal and J. K. Koksma, Sur l’ordre de grandeur des fonctions sommable, Koninklijke Nederlandse Akademie van Wetenschappen. Proceedings. Series A. Mathematical Sciences 53 (1950), 638–653.

    MathSciNet  Google Scholar 

  7. G. Harman, Metric Number Theory, London Mathematical Society Monographs, New Series, 18, The Clarendon Press, Oxford University Press, New York, 1998.

    MATH  Google Scholar 

  8. R. Nair, Some theorems on metric uniform distribution using L 2 methods, Journal of Number Theory 35 (1990), 18–52.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Nair and M. Pollicott, Pair correlation of sequences in higher dimensions, Israel Journal of Mathematics 157 (2007), 219–238.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. A. Roger, Hausdorff Measures, Cambridge University Press, London-New York, 1970.

    Google Scholar 

  11. Z. Rudnick and P. Sarnak, The pair correlation functions of fractional parts of polynomials, Communications in Mathematical Physics 194 (1998), 61–70.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nair, R. On pair correlations and Hausdorff dimension. Isr. J. Math. 171, 197–219 (2009). https://doi.org/10.1007/s11856-009-0047-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-009-0047-4

Keywords

Navigation