Skip to main content
Log in

On numbers badly approximable by dyadic rationals

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider a problem originating both from circle coverings and badly approximable numbers in the case of dyadic diophantine approximation. For the unit circle \( \mathbb{S} \) we give an elementary proof that the set {x\( \mathbb{S} \): 2n xc (mod 1) n ≥ 0} is a fractal set whose Hausdorff dimension depends continuously on c and is constant on intervals which form a set of Lebesgue measure 1. Hence it has a fractal graph. We completely characterize the intervals where the dimension remains unchanged. As a consequence we can describe the graph of c ↦ dim H {x ∈ [0; 1]: xm/2n < c/2n (mod 1) finitely often}.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Billard, Séries de Fourier aléatoirement bornée, continues, uniformément convergentes, Annales Scientifiques de l’-École Normale Supérieure 83 (1965), 131–179.

    MathSciNet  Google Scholar 

  2. A. Dvoretzky, On covering a circle by random placed arcs, Proceeding of the National Academy of Sciences, U.S.A. 42 (1956), 199–203.

    Article  MATH  MathSciNet  Google Scholar 

  3. K. Falconer, Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1990.

    MATH  Google Scholar 

  4. A. Fan and J. Schmeling, Coverings of the circle driven by rotations, in Proceedings of the Workshop Dynamical Systems from Number Theory to Probability 2 (Andrei Khrennikov ed.), Växjö Univ. Press, 2003, pp. 7–15.

  5. J. P. Kahane, Some Random Series of Functions, Cambridge University Press, Cambridge, MA, 1985.

    MATH  Google Scholar 

  6. A. Khintchine, Continued Fractions, P. Noordhoff, Ltd., Groningen, 1963.

    MATH  Google Scholar 

  7. B. P. Kitchens, Symbolic Dynamics, One-sided, Two-sided and Countable State Markov Shifts, Springer-Verlag, Berlin, 1998.

    MATH  Google Scholar 

  8. B. Mandelbrot, Renewal sets and random cutouts, Z. Wahrscheinlichkeitsheorie verw. Geb. 22 (1972), 145–157.

    Article  MATH  MathSciNet  Google Scholar 

  9. B. Mandelbrot, On Dvoretzky coverings for the circle, Z. Wahrscheinlichkeitsheorie verw. Geb. 22 (1972), 158–160.

    Article  MATH  MathSciNet  Google Scholar 

  10. W. Parry, On the β-expansions of real numbers, Acta Mathematica Acad Sci. Hung. 11 (1960), 401–416.

    Article  MATH  MathSciNet  Google Scholar 

  11. O. Perron, Zur Theorie der Matrices, Mathematische Annalen 64 (1906), 248–263.

    Article  MathSciNet  Google Scholar 

  12. Y. Pesin, Dimension Theory in Dynamical Systems, The University of Chicago Press, 1997.

  13. A. Rényi, Representation for real numbers and their ergodic properties, Acta Mathematica Acad Sci. Hung. 8 (1957), 477–493.

    Article  MATH  Google Scholar 

  14. J. Schmeling, Symbolic dynamics for β-shifts and self-normal numbers, Ergodic Theory and Dynamic Systems 17 (1997), 675–694.

    Article  MATH  MathSciNet  Google Scholar 

  15. L. Shepp, Covering the circle with random arcs, Israel Journal of Mathematics 11 (1972), 328–345.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Urbanski, On Hausdorff dimension of invariant sets for expanding maps of the circle, Ergodic Theory and Dynamic Systems 6 (1986), 295–309.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Nilsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsson, J. On numbers badly approximable by dyadic rationals. Isr. J. Math. 171, 93–110 (2009). https://doi.org/10.1007/s11856-009-0042-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-009-0042-9

Keywords

Navigation