Skip to main content
Log in

On the hyperplane conjecture for random convex sets

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let N ≥ n + 1, and denote by K the convex hull of N independent standard gaussian random vectors in ℝn. We prove that with high probability, the isotropic constant of K is bounded by a universal constant. Thus we verify the hyperplane conjecture for the class of gaussian random polytopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ball, Logarithmically concave functions and sections of convex sets in ℝ n, Studia Mathematica 88 (1988), 69–84.

    MATH  MathSciNet  Google Scholar 

  2. K. Ball, Normed spaces with a weak-Gordon-Lewis property, in Functional Analysis (Austin, Texas, 1987/1989), Lecture Notes in Math., Vol. 1470, Springer, Berlin, 1991, pp. 36–47.

    Google Scholar 

  3. G. Bennett, Probability Inequalities for the Sum of Independent Random Variables, Journal of the American Statistical Association 57 (1962), 33–45.

    Article  MATH  Google Scholar 

  4. J. Bourgain, On high-dimensional maximal functions associated to convex bodies, American Journal of Mathematics 108 (1986), 1467–1476.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Bourgain, Geometry of Banach spaces and harmonic analysis, in Proceedings of the International Congress of Mathematicians, (Berkeley, CA, 1986), Amer. Math. Soc., Providence, RI, 1987, pp. 871–878.

    Google Scholar 

  6. J. Bourgain, On the distribution of polynomials on high-dimensional convex sets, in Geometric Aspects of Functional Analysis (1989–90), Lecture Notes in Math., Vol. 1469, Springer, Berlin, 1991, pp. 127–137.

    Chapter  Google Scholar 

  7. J. Bourgain, On the isotropy-constant problem for “PSI-2”-bodies, in Geometric Aspects of Functional Analysis (2001–2002), Lecture Notes in Math., Vol. 1807, Springer, Berlin, 2003, pp. 114–121.

    Google Scholar 

  8. S. Dar, Remarks on Bourgain’s problem on slicing of convex bodies, in Geometric Aspects of Functional Analysis (Israel, 1992–1994), Oper. Theory Adv. Appl., 77, Birkhauser, Basel, 1995, pp. 61–66.

    Google Scholar 

  9. E. D. Gluskin, The diameter of Minkowski compactum roughly equals to n, Funktsional’nyj Analiz i ego Prilozheniya 15 (1981), 72–73; English translation in Functional Analysis and its Applications 15 (1981), 57–58.

    MathSciNet  Google Scholar 

  10. E. D. Gluskin, Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces (Russian), Matematicheskii Sbornik. Novaya Seriya 136(178) (1988), no. 1, 85–96; English translation in Mathematics of the USSR-Sbornik 64 (1989), no. 1, 85–96.

    Google Scholar 

  11. D. Hensley, Slicing convex bodies—bounds for slice area in terms of the body’s covariance, Proceedings of the American Mathematical Society 79 (1980), 619–625.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Junge, Hyperplane conjecture for quotient spaces of L p , Forum Mathematicum 6 (1994), 617–635.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Junge, Proportional subspaces of spaces with unconditional basis have good volume properties, in Geometric Aspects of Functional Analysis (Israel, 1992–1994), Operator Theory: Advances and Applications, 77, Birkhauser, Basel, 1995, pp. 121–129.

    Google Scholar 

  14. J. Kahn, J. Komlós and E. Szemerdi, On the probability that a random 1-matrix is singular, Journal of the American Mathematical Society 8 (1995), 223–240.

    Article  MATH  MathSciNet  Google Scholar 

  15. B. Klartag, On convex perturbations with a bounded isotropic constant, Geometric and Functional Analysis (GAFA) 16 (2006), 1274–1290.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. König, M. Meyer and A. Pajor, The isotropy constants of the Schatten classes are bounded, Mathematische Annalen 312 (1998), 773–783.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. E. Litvak, A. Pajor, M. Rudelson and N. Tomczak-Jaegermann, Smallest singular value of random matrices and geometry of random polytopes, Advances in Mathematics 195 (2005), 491–523.

    Article  MATH  MathSciNet  Google Scholar 

  18. E. Milman, Dual mixed volumes and the slicing problem, Advances in Mathematics 207 (2006), 566–598.

    Article  MATH  MathSciNet  Google Scholar 

  19. V. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, in Geometric Aspects of Functional Analysis (1987–88), Lecture Notes in Math., Vol. 1376, Springer, Berlin, 1989, pp. 64–104.

    Chapter  Google Scholar 

  20. F. Nazarov, On the maximal perimeter of a convex set in ℝ n with respect to a Gaussian measure, in Geometric Aspects of Functional Analysis (2001–02), Lecture Notes in Math., Vol. 1807, Springer, Berlin, 2003, pp. 169–187.

    Google Scholar 

  21. G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Mathematics, Vol. 94, Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  22. C. A. Rogers and G. C. Shephard, The difference body of a convex body, Archiv der Mathematik 8 (1957), 220–233.

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Rudelson and R. Vershynin, The Littlewood-Offord Problem and invertibility of random matrices, Advances in Mathematics 218 (2008), 600–633.

    Article  MATH  MathSciNet  Google Scholar 

  24. S. J. Szarek, The finite-dimensional basis problem with an appendix on nets of Grassman manifold, Acta Mathematica 141, (1983), 153–179.

    Article  MathSciNet  Google Scholar 

  25. T. Tao and V. Vu, On the singularity probability of random Bernoulli matrices, Journal of the American Mathematical Society 20 (2007), 603–628.

    Article  MATH  MathSciNet  Google Scholar 

  26. A. W. Van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes, Springer-Verlag, 1996.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo’az Klartag.

Additional information

Supported by the Clay Mathematics Institute and by NSF grant #DMS-0456590

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klartag, B., Kozma, G. On the hyperplane conjecture for random convex sets. Isr. J. Math. 170, 253–268 (2009). https://doi.org/10.1007/s11856-009-0028-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-009-0028-7

Keywords

Navigation