Skip to main content
Log in

Hamiltonian dynamics on convex symplectic manifolds

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study the dynamics of Hamiltonian diffeomorphisms on convex symplectic manifolds. To this end we first establish an explicit isomorphism between the Floer homology and the Morse homology of such a manifold, and then use this isomorphism to construct a biinvariant metric on the group of compactly supported Hamiltonian diffeomorphisms analogous to the metrics constructed by Viterbo, Schwarz and Oh. These tools are then applied to prove and reprove results in Hamiltonian dynamics. Our applications comprise a uniform lower estimate for the slow entropy of a compactly supported Hamiltonian diffeomorphism, the existence of infinitely many non-trivial periodic points of a compactly supported Hamiltonian diffeomorphism of a subcritical Stein manifold, new cases of the Weinstein conjecture, and, most noteworthy, new existence results for closed trajectories of a charge in a magnetic field on almost all small energy levels. We shall also obtain some new Lagrangian intersection results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Biran and K. Cieliebak, Lagrangian embeddings into subcritical Stein manifolds, Israel Journal of Mathematics 127 (2002), 221–244.

    MATH  MathSciNet  Google Scholar 

  2. P. Biran, L. Polterovich and D. Salamon, Propagation in Hamiltonian dynamics and relative symplectic homology, Duke Mathematical Journal 119 (2003), 65–118.

    Article  MATH  MathSciNet  Google Scholar 

  3. K. Cieliebak, Subcritical Stein manifolds are split, preprint, math.DG/0204351.

  4. K. Cieliebak, A. Floer and H. Hofer, Symplectic homology. II. A general construction, Mathematische Zeitschrift 218 (1995), 103–122.

    Article  MATH  MathSciNet  Google Scholar 

  5. K. Cieliebak, A. Floer, H. Hofer and K. Wysocki, Applications of symplectic homology. II. Stability of the action spectrum, Mathematische Zeitschrift 223 (1996), 27–45.

    MATH  MathSciNet  Google Scholar 

  6. K. Cieliebak, V. Ginzburg and E. Kerman, Symplectic homology and periodic orbits near symplectic submanifolds, Commentarii Mathematici Helvetici 79 (2004), 554–581.

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Contreras, The Palais-Smale condition for contact type energy levels for convex lagrangian systems, math.DS/0304238.

  8. G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mañé’s critical values, Geometric and Functional Analysis 8 (1998), 788–809.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain, The Palais-Smale condition and Mañé’s critical values, Annales de l’Institut Henri Poincaré 1 (2000), 655–684.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Contreras, L. Macarini and G. P. Paternain, Periodic orbits for exact magnetic flows on surfaces, International Mathematics Research Notices (2004), 361–387.

  11. P. Eberlein, Geometry of 2-step nilpotent groups with a left invariant metric, Annales Scientifiques de l’École Normale Supérieure 27 (1994), 611–660.

    MATH  MathSciNet  Google Scholar 

  12. Ya. Eliashberg, Topological characterization of Stein manifolds of dimension > 2, International Journal of Mathematics 1 (1990), 29–46.

    Article  MATH  MathSciNet  Google Scholar 

  13. Ya. Eliashberg, Symplectic geometry of plurisubharmonic functions, With notes by Miguel Abreu. NATO Advanced Science Institutes Ser. C Math. Phys. Sci., 488, Gauge theory and symplectic geometry (Montreal, 1995), Kluwer Acad. Publ., Dordrecht, 1997, pp. 49–67.

    Google Scholar 

  14. Ya. Eliashberg and M. Gromov, Convex symplectic manifolds, in Several Complex Variables and Complex Geometry, Proceedings, Summer Research Institute, Santa Cruz, 1989, Part 2, (E. Bedford et al., eds.), Proceedings of Symposia in Pure Mathematics 52, American Mathematical Society, Providence, RI, 1991, pp. 135–162.

    Google Scholar 

  15. A. Floer, A relative Morse index for the symplectic action, Communications on Pure and Applied Mathematics 41 (1988), 393–407.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Floer, The unregularized gradient flow of the symplectic action, Communications on Pure and Applied Mathematics 41 (1988), 775–813.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Floer, Morse theory for Lagrangian intersections, Journal of Differential Geometry 28 (1988), 513–547.

    MATH  MathSciNet  Google Scholar 

  18. A. Floer, Witten’s complex and infinite-dimensional Morse theory, Journal of Differential Geometry 30 (1989), 207–221.

    MATH  MathSciNet  Google Scholar 

  19. A. Floer and H. Hofer, Symplectic homology. I Open sets in ℂ n, Mathematische Zeitschrift 215 (1994), 37–88.

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Floer, H. Hofer and D. Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Mathematical Journal 80 (1995), 251–292.

    Article  MATH  MathSciNet  Google Scholar 

  21. U. Frauenfelder, Floer homology of symplectic quotients and the Arnold-Givental conjecture, Diss. ETH No. 14981. Zürich 2003. Available at http://e-collection.ethbib.ethz.ch/ecol-pool/diss/fulltext/eth14981.pdf

  22. U. Frauenfelder, V. Ginzburg and F. Schlenk, Energy capacity inequalities via an action selector, in Geometry, spectral theory, groups, and dynamics, Contemporary Mathematics 387, American Mathematical Society, Providence, RI, 2005, pp. 129–152.

    Google Scholar 

  23. U. Frauenfelder and F. Schlenk, Hamiltonian dynamics on convex symplectic manifolds, math.SG/0303282.

  24. U. Frauenfelder and F. Schlenk, Slow entropy and symplectomorphisms of cotangent bundles, math.SG/0404017.

  25. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Second edition. Grundlehren der Mathematischen Wissenschaften 224, Springer-Verlag, Berlin, 1983.

    MATH  Google Scholar 

  26. V. Ginzburg, On closed trajectories of a charge in a magnetic field, An application of symplectic geometry. Contact and symplectic geometry (Cambridge, 1994), Publications of the Newton Institute 8, Cambridge University Press, Cambridge, 1996, pp. 131–148.

    Google Scholar 

  27. V. Ginzburg, Hamiltonian dynamical systems without periodic orbits, Northern California Symplectic Geometry Seminar, American Mathematical Society Translations Ser. 2, 196, American Mathematical Society, Providence, RI, 1999, pp. 35–48.

    Google Scholar 

  28. V. Ginzburg, The Weinstein conjecture and theorems of nearby and almost existence, The breadth of symplectic and Poisson geometry, Progress in Mathematics 232, Birkhäuser Boston, Boston, MA, 2005, pp. 139–172.

    Google Scholar 

  29. V. Ginzburg and B. Gürel, Relative Hofer-Zehnder capacity and periodic orbits in twisted cotangent bundles, Duke Mathematical Journal 123 (2004), 1–47.

    Article  MATH  MathSciNet  Google Scholar 

  30. V. Ginzburg and E. Kerman, Periodic orbits in magnetic fields in dimensions greater than two, Geometry and topology in dynamics (Winston-Salem, NC, 1998/San Antonio, TX, 1999), Contemporary Mathematics 246, American Mathematical Society, Providence, RI, 1999, pp. 113–121.

    Google Scholar 

  31. V. Ginzburg and E. Kerman, Periodic orbits of Hamiltonian flows near symplectic extrema, Pacific Journal of Mathematics 206 (2002), 69–91.

    MATH  MathSciNet  Google Scholar 

  32. D. Gromoll and J. Wolf, Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, Bulletin of the American Mathematical Society 77 (1971), 545–552.

    Article  MATH  MathSciNet  Google Scholar 

  33. M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Inventiones Mathematicae 82 (1985), 307–347.

    Article  MATH  MathSciNet  Google Scholar 

  34. D. Hermann, Holomorphic curves and Hamiltonian systems in an open set with restricted contact-type boundary, Duke Mathematical Journal 103 (2000), 335–374.

    Article  MATH  MathSciNet  Google Scholar 

  35. H. Hofer and C. Viterbo, The Weinstein conjecture in cotangent bundles and related results, Annali della Scuola Normale Superiore di Pisa Cl. Sci. IV 15 (1988), 411–445.

    MATH  MathSciNet  Google Scholar 

  36. H. Hofer and E. Zehnder, Periodic solutions on hypersurfaces and a result by C. Viterbo, Inventiones Mathematicae 90 (1987), 1–9.

    Article  MATH  MathSciNet  Google Scholar 

  37. H. Hofer and E. Zehnder, A new capacity for symplectic manifolds, in Analysis, et cetera, Academic Press, Boston, MA, 1990, pp. 405–427.

    Google Scholar 

  38. H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, Basel, 1994.

    MATH  Google Scholar 

  39. E. Kerman, Periodic orbits of Hamiltonian flows near symplectic critical submanifolds, International Mathematics Research Notices, 1999, pp. 953–969.

  40. V. V. Kozlov, Calculus of variations in the large and classical mechanics, Russian Mathematical Surveys 40 (1985), 37–71.

    Article  MATH  Google Scholar 

  41. F. Laudenbach and J.-C. Sikorav, Hamiltonian disjunction and limits of Lagrangian submanifolds, International Mathematics Research Notices, 1994, pp. 161–168.

  42. F. Lalonde and D. McDuff, The geometry of symplectic energy, Annals of Mathematics 141 (1995), 349–371.

    Article  MATH  MathSciNet  Google Scholar 

  43. F. Lalonde and L. Polterovich, Symplectic diffeomorphisms as isometries of Hofer’s norm, Topology 36 (1997), 711–727.

    Article  MATH  MathSciNet  Google Scholar 

  44. G. Lu, The Weinstein conjecture on some symplectic manifolds containing the holomorphic spheres, Kyushu Journal of Mathematics 52 (1998), 331–351 and 54 (2000), 181–182.

    Article  MATH  MathSciNet  Google Scholar 

  45. L. Macarini, Hofer-Zehnder capacity and Hamiltonian circle actions, Communications in Contemporary Mathematics 6 (2004), 913–945.

    Article  MATH  MathSciNet  Google Scholar 

  46. L. Macarini and F. Schlenk, A refinement of the Hofer-Zehnder theorem on the existence of closed characteristics near a hypersurface, The Bulletin of the London Mathematical Society 37 (2005), 297–300.

    Article  MATH  MathSciNet  Google Scholar 

  47. D. McDuff and D. Salamon, Introduction to Symplectic Topology, Oxford Mathematical Monographs, Clarendon Press, New York, 1995, 425 pp.

    MATH  Google Scholar 

  48. D. McDuff and D. Salamon, J-holomorphic Curves and Symplectic Topology, AMS Colloquium Publications 52. American Mathematical Society, Providence, RI, 2004.

    MATH  Google Scholar 

  49. S. P. Novikov, The Hamiltonian formalism and a many-valued analogue of Morse theory, Russian Mathematical Surveys 37 (1982), 1–56.

    Article  MATH  Google Scholar 

  50. Y.-G. Oh, Symplectic topology as the geometry of action functional. II. Pants product and cohomological invariants, Communications in Analysis and Geometry 7 (1999), 1–54.

    MATH  MathSciNet  Google Scholar 

  51. Y.-G. Oh, Chain level Floer theory and Hofer’s geometry of the Hamiltonian diffeomorphism group, Asian Journal of Mathematics 6 (2002), 579–624.

    MATH  MathSciNet  Google Scholar 

  52. Y.-G. Oh, Spectral invariants,analysis of the Floer moduli space, and geometry of the Hamiltonian diffeomorphism group, Duke Mathematical Journal 130 (2005), 199–295.

    MATH  MathSciNet  Google Scholar 

  53. O. Osuna, Periodic orbits of weakly exact magnetic flows, 2005, preprint.

  54. G. Paternain, Magnetic rigidity of horocycle flows, Pacific Journal of Mathematics 225 (2006), 301–323.

    Article  MathSciNet  MATH  Google Scholar 

  55. G. Paternain and M. Paternain, Critical values of autonomous Lagrangian systems, Commentarii Mathematici Helvetici 72 (1997), 481–499.

    Article  MATH  MathSciNet  Google Scholar 

  56. G. Paternain, L. Polterovich and K. Siburg, Boundary rigidity for Lagrangian submanifolds, non-removable intersections, and Aubry-Mather theory, Dedicated to Vladimir I. Arnold on the occasion of his 65th birthday. Moscow Mathematical Journal 3 (2003), 593–619, 745.

  57. S. Piunikhin, D. Salamon and M. Schwarz, Symplectic Floer-Donaldson theory and quantum cohomology, in Contact and Symplectic Geometry (Cambridge, 1994), Publ. Newton Inst. 8, Cambridge University Press, Cambridge, 1996, pp. 171–200.

    Google Scholar 

  58. L. Polterovich, An obstacle to non-Lagrangian intersections, in The Floer Memorial Volume, Progr. Math. 133, Birkhäuser, Basel, 1995, pp. 575–586.

    Google Scholar 

  59. L. Polterovich, Geometry on the group of Hamiltonian diffeomorphisms, in Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), Doc. Math 1998, Extra Vol. II, pp. 401–410.

    MathSciNet  Google Scholar 

  60. L. Polterovich, Growth of maps, distortion in groups and symplectic geometry, Inventiones Mathematicae 150 (2002), 655–686.

    Article  MATH  MathSciNet  Google Scholar 

  61. D. Salamon, Lectures on Floer homology, Symplectic geometry and topology (Park City, UT, 1997), IAS/Park City Math. Ser. 7, American Mathematical Society, Providence, RI, 1999, pp. 143–229.

    Google Scholar 

  62. D. Salamon and E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Communications on Pure and Applied Mathematics 45 (1992), 1303–1360.

    Article  MATH  MathSciNet  Google Scholar 

  63. F. Schlenk, Applications of Hofer’s geometry to Hamiltonian dynamics, Commentarii Mathematici Helvetici 81 (2006), 105–121.

    Article  MATH  MathSciNet  Google Scholar 

  64. M. Schwarz, Morse homology, Progress in Mathematics 111, Birkhäuser Verlag, Basel, 1993.

    MATH  Google Scholar 

  65. M. Schwarz, Cohomology operations from S 1-cobordisms in Floer homology, Ph. D. thesis, ETH Zürich, Diss. ETH No. 11182, 1995. http://www.math.unileipzig.de/-schwarz/diss.pdf.

  66. M. Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific Journal of Mathematics 193 (2000), 419–461.

    MATH  MathSciNet  Google Scholar 

  67. C. Viterbo, Symplectic topology as the geometry of generating functions, Mathematische Annalen 292 (1992), 685–710.

    Article  MATH  MathSciNet  Google Scholar 

  68. C. Viterbo, Functors and computations in Floer homology with applications. I, Geometric and Functional Analysis 9 (1999), 985–1033.

    Article  MATH  MathSciNet  Google Scholar 

  69. S. Yau, On the fundamental group of compact manifolds of non-positive curvature, Annals of Mathematics 93 (1971), 579–585.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by the Swiss National Foundation.

Supported by the Swiss National Foundation and the von Roll Research Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frauenfelder, U., Schlenk, F. Hamiltonian dynamics on convex symplectic manifolds. Isr. J. Math. 159, 1–56 (2007). https://doi.org/10.1007/s11856-007-0037-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-007-0037-3

Keywords

Navigation