Skip to main content
Log in

Small ball probability and Dvoretzky’s Theorem

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Large deviation estimates are by now a standard tool in Asymptotic Convex Geometry, contrary to small deviation results. In this note we present a novel application of a small deviations inequality to a problem that is related to the diameters of random sections of high dimensional convex bodies. Our results imply an unexpected distinction between the lower and upper inclusions in Dvoretzky’s Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Cordero-Erausquin, M. Fradelizi and B. Maurey, The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems, Journal of Functional Analysis 214 (2004), 410–427.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Second edition, Applications of Mathematics (New York), 38, Springer-Verlag, New York, 1998.

    MATH  Google Scholar 

  3. A. Giannopoulos and V. Milman, On the diameter of proportional sections of a symmetric convex body, International Mathematics Research Notices 1 (1997), 5–19.

    Article  MathSciNet  Google Scholar 

  4. A. Giannopoulos and V. Milman, Mean width and diameter of proportional sections of a symmetric convex body, Journal für die reine und angewandte Mathematik 497 (1998), 113–139.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Giannopoulos, V. Milman and A. Tsolomitis, Asymptotic formulas for the diameter of sections of symmetric convex bodies, Journal of Functional Analysis 223 (2005), 86–108.

    Article  MATH  MathSciNet  Google Scholar 

  6. O. Guédon, Kahane-Khinchine type inequalities for negative exponent, Mathematika 46 (1999), 165–173.

    Article  MATH  MathSciNet  Google Scholar 

  7. F. den Hollander, Large Deviations, Fields Institute Monographs, 14, American Mathematical Society, Providence, RI, 2000.

    MATH  Google Scholar 

  8. B. Klartag, A geometric inequality and a low M estimate, Proceedings of the American Mathematical Society 132 (2004), 2619–2628.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Lata la and K. Oleszkiewitz, Small ball probability estimates in terms of width, Studia Mathematica 169 (2005), 305–314.

    Article  MathSciNet  Google Scholar 

  10. M. Ledoux, The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs, 89, American Mathematical Society, Providence, RI, 2001.

    MATH  Google Scholar 

  11. W. V. Li and Q.-M. Shao, Gaussian processes: inequalities, small ball probabilities and applications, Stochastic processes: theory and methods, in Handbook of Statistics, 19, North-Holland, Amsterdam, 2001, pp. 533–597.

    Google Scholar 

  12. L. Lovász and M. Simonovits, Random walks in a convex body and an improved volume algorithm, Random Structures and Algorithms 4 (1993), 359–412.

    MATH  MathSciNet  Google Scholar 

  13. A. E. Litvak, V. D. Milman, V. D. and G. Schechtman, Averages of norms and quasi-norms, Mathematische Annalen 312 (1998), 95–124.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. E. Litvak, P. Mankiewicz and N. Tomczak-Jaegermann, Randomized isomorphic Dvoretzky theorem, Comptes Rendus de l’Académie des Sciences, Paris 335 (2002), 345–350.

    MATH  MathSciNet  Google Scholar 

  15. V. D. Milman, A new proof of the theorem of A. Dvoretzky on sections of convex bodies, Functional Analysis and its Applications 5 (1971), 28–38 (translated from Russian).

    MathSciNet  Google Scholar 

  16. V. D. Milman, Isomorphic symmetrizations and geometric inequalities, in Geometric Aspects of Functional Analysis (1986/87), Israel seminar, Lecture Notes in Mathematics 1317, Springer-Verlag, Berlin, 1988, pp. 107–131.

    Chapter  Google Scholar 

  17. V. D. Milman and G. Schechtman, Asymptotic Theory of Finite-dimensional Normed Spaces, Lecture Notes in Mathematics 200, Springer-Verlag, Berlin, 1986.

    MATH  Google Scholar 

  18. V. D. Milman and G. Schechtman, Global versus local asymptotic theories of finite-dimensional normed spaces, Duke Mathematical Journal 90 (1997), 73–93.

    Article  MATH  MathSciNet  Google Scholar 

  19. V. D. Milman and R. Wagner, Some remarks on a lemma of Ran Raz, in Geometric Aspects of Functional Analysis, Proceedings of the Israel seminar (GAFA) 2001–2002, Lecture Notes in Mathematics 1807, 2003, pp. 158–168.

  20. R. Raz, Exponential separation of quantum and classical communication complexity, Annual ACM Symposium on Theory of Computing, Atlanta, GA, 1999, pp. 358–367.

  21. S. R. S. Varadhan, Large Deviations and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 40, 1993.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NSF grant DMS-0111298 and the Bell Companies Fellowship.

Supported by NSF grant 0401032 and the Sloan Research Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klartag, B., Vershynin, R. Small ball probability and Dvoretzky’s Theorem. Isr. J. Math. 157, 193–207 (2007). https://doi.org/10.1007/s11856-006-0007-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-006-0007-1

Keywords

Navigation