Abstract
It is shown that the normalized cubic Gauss sums for integers c ≡ 1 ((mod 3)) of the field \({\Bbb Q}(\sqrt { - 3} )\) satisfy
for every l ∈ ℤ and any ε > 0. This improves on the estimate established by Heath-Brown and Patterson [4] in demonstrating the uniform distribution of the cubic Gauss sums around the unit circle. When l = 0 it is conjectured that the above sum is asymptotically of order X5/6, so that the upper bound is essentially best possible. The proof uses a cubic analogue of the author’s mean value estimate for quadratic character sums [3].
This is a preview of subscription content, access via your institution.
References
M. D. Coleman, Topics in the distribution of primes, Ph.D. Thesis, Cambridge, 1988.
H. Hasse, Vorlesungen über Zahlentheorie, Springer, Berlin, 1950.
D. R. Heath-Brown, A mean value estimate for real character sums, Acta Arithmetica 72 (1995), 235–275.
D. R. Heath-Brown and S. J. Patterson, The distribution of Kummer sums at prime arguments, Journal für die Reine und angewandte Mathematik 310 (1979), 111–130.
E. E. Kummer, De residuis cubicis disquisitiones nonnullae analyticae, Journal für die Reine und angewandte Mathematik 32 (1846), 341–359.
H. L. Montgomery and R. C. Vaughan, Hilbert’s inequality, Journal of the London Mathematical Society (2) 8 (1974), 73–82.
S. J. Patterson, A cubic analogue of the theta series, Journal für die Reine und angewandte Mathematik 296 (1977), 125–161.
S. J. Patterson, On the distribution of Kummer sums, Journal für die Reine und angewandte Mathematik 303 (1978), 126–143.
E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd edition, revised by D. R. Heath-Brown, Oxford University Press, 1986.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Heath-Brown, D.R. Kummer’s conjecture for cubic Gauss sums. Isr. J. Math. 120, 97–124 (2000). https://doi.org/10.1007/s11856-000-1273-y
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11856-000-1273-y