Skip to main content

Kummer’s conjecture for cubic Gauss sums

Abstract

It is shown that the normalized cubic Gauss sums for integers c ≡ 1 ((mod 3)) of the field \({\Bbb Q}(\sqrt { - 3} )\) satisfy

$${\sum\limits_{N(c) \leqslant X} {\tilde g(c)\Lambda (c)\left( {\frac{c}{{\left| c \right|}}} \right)} ^l} \ll {}_\varepsilon {X^{5/6 + \varepsilon }} + \left| l \right|{X^{3/4 + \varepsilon }},$$

for every l ∈ ℤ and any ε > 0. This improves on the estimate established by Heath-Brown and Patterson [4] in demonstrating the uniform distribution of the cubic Gauss sums around the unit circle. When l = 0 it is conjectured that the above sum is asymptotically of order X5/6, so that the upper bound is essentially best possible. The proof uses a cubic analogue of the author’s mean value estimate for quadratic character sums [3].

This is a preview of subscription content, access via your institution.

References

  1. M. D. Coleman, Topics in the distribution of primes, Ph.D. Thesis, Cambridge, 1988.

  2. H. Hasse, Vorlesungen über Zahlentheorie, Springer, Berlin, 1950.

    Book  Google Scholar 

  3. D. R. Heath-Brown, A mean value estimate for real character sums, Acta Arithmetica 72 (1995), 235–275.

    MathSciNet  MATH  Google Scholar 

  4. D. R. Heath-Brown and S. J. Patterson, The distribution of Kummer sums at prime arguments, Journal für die Reine und angewandte Mathematik 310 (1979), 111–130.

    MathSciNet  MATH  Google Scholar 

  5. E. E. Kummer, De residuis cubicis disquisitiones nonnullae analyticae, Journal für die Reine und angewandte Mathematik 32 (1846), 341–359.

    Article  MathSciNet  Google Scholar 

  6. H. L. Montgomery and R. C. Vaughan, Hilbert’s inequality, Journal of the London Mathematical Society (2) 8 (1974), 73–82.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. J. Patterson, A cubic analogue of the theta series, Journal für die Reine und angewandte Mathematik 296 (1977), 125–161.

    MathSciNet  MATH  Google Scholar 

  8. S. J. Patterson, On the distribution of Kummer sums, Journal für die Reine und angewandte Mathematik 303 (1978), 126–143.

    MathSciNet  MATH  Google Scholar 

  9. E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd edition, revised by D. R. Heath-Brown, Oxford University Press, 1986.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Heath-Brown.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heath-Brown, D.R. Kummer’s conjecture for cubic Gauss sums. Isr. J. Math. 120, 97–124 (2000). https://doi.org/10.1007/s11856-000-1273-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-000-1273-y