Skip to main content
Log in

Stability and instability of lattices in semisimple groups

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Using cohomological methods, we show that lattices in semisimple groups are typically stable with respect to the Frobenius norm but not with respect to the operator norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Agol, The virtual Haken conjecture, Doc. Math. 18 (2013), 1045–1087.

    Article  MathSciNet  Google Scholar 

  2. G. Arzhantseva and L. Păunescu, Almost commuting permutations are near commuting permutations, J. Funct. Anal. 269 (2015), 745–757.

    Article  MathSciNet  Google Scholar 

  3. A. Ash, Cohomology of subgroups of finite index of SL(3, Z) and SL(4, Z), Bull. Amer. Math. Soc. 83, (1977), 367–368.

    Article  MathSciNet  Google Scholar 

  4. A. Ash and A. Borel, Armand, Generalized modular symbols, in Cohomology of Arithmetic Groups and Automorphic Forms (Luminy-Marseille, 1989), Springer, Berlin, 1990, pp. 57–75.

    Chapter  Google Scholar 

  5. U. Bader and R. Sauer Higher Kazhdan property and unitary cohomology of arithmetic groups, arXiv:2308.06517 [math.RT]

  6. O. Becker and A. Lubotzky, Group stability and Property (T), J. Funct. Anal. 278 (2020), Article no. 108298.

  7. B. Bekka, P. de la Harpe and A. Valette, Kazhdan’s Property (T), Cambridge University Press, Cambridge, 2008.

    Book  Google Scholar 

  8. N. Bergeron and L. Clozel, Quelques consequences des travaux d’Arthur pour le spectre et la topologie des variétés hyperboliques, Invent. Math. 192, (2013), 505–532.

    MathSciNet  Google Scholar 

  9. N. Bergeron and L. Clozel, Sur la cohomologie des variétés hyperboliques de dimension 7 trialitaires, Israel J. Math. 222 (2017), 333–400.

    Article  MathSciNet  Google Scholar 

  10. D. Blasius, J. Franke and F. Grunewald, Cohomology of S-arithmetic subgroups in the number field case, Invent. Math. 116 (1994), 75–93.

    Article  MathSciNet  Google Scholar 

  11. A. Borel, Le plan projectif des octaves et les spheres comme espaces homogenes, C. R. Acad. Sci. Paris 230 (1950), 1378–1380.

    MathSciNet  Google Scholar 

  12. A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115–207.

    Article  MathSciNet  Google Scholar 

  13. A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, American Mathematical Society, Providence, RI, 2000.

    Book  Google Scholar 

  14. K. S. Brown, Cohomology of Groups, Springer, New York-Berlin, 1982.

    Book  Google Scholar 

  15. R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987), 311–335.

    Article  MathSciNet  Google Scholar 

  16. M. Dadarlat, Obstructions to matricial stability of discrete groups and almost flat K-theory, Adv. Math. 384 (2021), Article no. 107722.

  17. J. F. Davis, The surgery semicharacteristic, Proc. London Math. Soc. (3) 47 (1983), 411–428.

    Article  MathSciNet  Google Scholar 

  18. M. De Chiffre, L. Glebsky, A. Lubotzky and A. Thom, Stability, cohomology vanishing, and nonapproximable groups, Forum Math. Sigma 8 (2020), Article no. e18.

  19. P. Deligne, Extensions centrales non residuellement finies de groupes arithmétiques, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), A203–A208.

    Google Scholar 

  20. H. Garland, p-adic curvature and the cohomology of discrete subgroups of p-adic groups, Ann. of Math. (2) 97 (1973), 375–423.

    Article  MathSciNet  Google Scholar 

  21. D. H. Kochloukova and F. F. Lima, Homological finiteness properties of fibre products, Q. J. Math. 69 (2018), 835–854.

    Article  MathSciNet  Google Scholar 

  22. A. Lubotzky, On finite index subgroups of linear groups, Bull. London Math. Soc. 19 (1987), 325–328.

    Article  MathSciNet  Google Scholar 

  23. A. Lubotzky, Free quotients and the first Betti number of some hyperbolic manifolds, Transform. Groups 1 (1996), 71–82.

    Article  MathSciNet  Google Scholar 

  24. A. Lubotzky and I. Oppenheim, Non p-norm approximated groups, J. Anal. Math. 141 (2020), 305–321.

    Article  MathSciNet  Google Scholar 

  25. Y. Matsushima, On Betti numbers of compact, locally sysmmetric Riemannian manifolds, Osaka Math. J. 14 (1962), 1–20.

    MathSciNet  Google Scholar 

  26. C. Miller, The second homology group of a group; relations among commutators, Proc. Amer. Math. Soc. 3 (1952), 588–595.

    Article  MathSciNet  Google Scholar 

  27. M. Mimura, Homotopy theory of Lie groups, in Handbook of Algebraic Topology, North-Holland, Amsterdam, 1995, pp. 951–991.

    Chapter  Google Scholar 

  28. M. Mimura and H. Toda, Topology of Lie Groups. I, II, American Mathematical Society, Providence, RI, 1991.

    Google Scholar 

  29. V. Naik Lazard Correspondence up to Isoclinism, Ph.D. Thesis, The University of Chicago, 2013.

  30. J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of Number Fields, Springer, Berlin, 2008.

    Book  Google Scholar 

  31. A. S. Rapinchuk, The congruence subgroup problem, in Algebra, K-Theory, Groups, and Education (New York, 1997), American Mathematical Society, Providence, RI, 1999, pp. 175–188.

    Google Scholar 

  32. J.-P. Serre, Le problème des groupes de congruence pour SL2, Ann. of Math. (2) 92 (1970), 489–527.

    Article  MathSciNet  Google Scholar 

  33. C. Soulé, The cohomology of SL3(Z), Topology 17 (1978), 1–22.

    Article  MathSciNet  Google Scholar 

  34. T. N. Venkataramana, Virtual Betti numbers of compact locally symmetric spaces, Israel J. Math. 166 (2008), 235–238.

    Article  MathSciNet  Google Scholar 

  35. D. Witte Morris, A Lattice With No Torsion Free Subgroup of Finite Index (after P. Deligne), informal discussion at the University of Chicago, 2009, https://deductivepress.ca/dmorris/talks/deligne-torsion.pdf.

  36. J. Wolf, Symmetric spaces which are real cohomology spheres, J. Differential Geometry 3 (1969), 59–68.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the referees who helped improving the paper in many places.

U. B. was partially supported by ISF Moked grant number 2919/19. A. L. acknowledges with gratitude the hospitality and support of the Fields Institute (Toronto) where part of thisworkwas carried out, aswell as a grant by the European Research Council (ERC) under the European Union’s Horizon 2020 (grant agreement No 882751). R.S. was partially supported by the projects 441426599 and 441848266 funded by the DFG (Deutsche Forschungsgemeinschaft). R. S. thanks the University of Chicago and the Weizmann Institute for hospitality when part of this workwas carried out. S.W. was partially supported by the NSF grant 2105451.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Lubotzky.

Additional information

Dedicated to Peter Sarnak with admiration and affection on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bader, U., Lubotzky, A., Sauer, R. et al. Stability and instability of lattices in semisimple groups. JAMA 151, 1–23 (2023). https://doi.org/10.1007/s11854-023-0329-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-023-0329-5

Navigation