Skip to main content
Log in

Infinite partial sumsets in the primes

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We show that there exist infinite sets A = (a1, a2, …} and B = {b1, b2, …} of natural numbers such that ai + bj is prime whenever 1 ≤ i < j.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Balog, Linear equations in primes, Mathematika 39 (1992), 367–378.

    Article  MathSciNet  Google Scholar 

  2. W. Banks, T. Freiberg and J. Maynard, On limit points of the sequence of normalized prime gaps, Proc. Lond. Math. Soc. (3) 113 (2016), 515–539.

    Article  MathSciNet  Google Scholar 

  3. V. Bergelson, Sets of recurrence of ℤm-actions and properties of sets of differences in ℤm, J. London Math. Soc. (2) 31 (1985), 295–304.

    Article  MathSciNet  Google Scholar 

  4. C. Chou, Weakly almost periodic functions and thin sets in discrete groups, Trans. Amer. Math. Soc. 321 (1990) 333–346.

    Article  MathSciNet  Google Scholar 

  5. Y. Choi and M. J. Heath, Characterizing derivations from the disk algebra to its dual, Proc. Amer. Math. Soc. 139 (2011), 1073–1080.

    Article  MathSciNet  Google Scholar 

  6. A. de Polignac, Recherches nouvelles sur les nombres premiers, C. R. Acad. Sci. Paris 29 (1849), 397–401.

    Google Scholar 

  7. L. E. Dickson, A new extension of Dirichlet’s theorem on prime numbers, Messenger of Math. 33 (1904), 155–161.

    Google Scholar 

  8. A. Dymek, S. Kasjan, J. Kułaga-Przymus and M. Lemańczyk, B-free sets and dynamics, Trans. Amer. Math. Soc. 370 (2018), 5425–5489.

    Article  MathSciNet  Google Scholar 

  9. P. Erdős, Problems and results in combinatorial number theory, Astérisque 2 (1975), 295–309.

    MathSciNet  Google Scholar 

  10. H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Anal. Math. 31 (1977), 204–256.

    Article  Google Scholar 

  11. P. X. Gallagher, On the distribution of primes in short intervals, Mathematika 23 (1976), 4–9.

    Article  MathSciNet  Google Scholar 

  12. A. Granville, A note on sums of primes, Canad. Math. Bull. 33 (1990), 452–454.

    Article  MathSciNet  Google Scholar 

  13. B. Green and T. Tao, Linear equations in primes, Ann. of Math. (2) 171 (2010), 1753–1850.

    Article  MathSciNet  Google Scholar 

  14. B. Green and T. Tao, The Möbius function is strongly orthogonal to nilsequences, Ann. of Math. (2) 175 (2012), 541–566.

    Article  MathSciNet  Google Scholar 

  15. B. Green, T. Tao and T. Ziegler, An inverse theorem for the Gowers Us+1[N]-norm, Ann. of Math. (2) 176 (2012), 1231–1372.

    Article  MathSciNet  Google Scholar 

  16. G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio Numerorum.’ III. On the expression of a number as a sum of primes, Acta Math. 44 (1923), 1–70.

    Article  MathSciNet  Google Scholar 

  17. D. Jakobson, Quantum limits on flat tori, Ann. of Math. (2) 145 (1997), 235–266.

    Article  MathSciNet  Google Scholar 

  18. A. Kechris, Classical Descriptive Set Theory, Springer, Berlin-New York, 1995.

    Book  Google Scholar 

  19. B. Kra, J. Moreira, F. Richter and D. Robertson, A proof of Erdős’s B + B + t conjecture, arXiv:2206.12377 [math.DS]

  20. J. Maynard, Small gaps between primes, Ann. of Math. (2) 181 (2015), 383–413.

    Article  MathSciNet  Google Scholar 

  21. O. McGrath, A variation of the prime k-tuples conjecture with applications to quantum limits, Math. Ann. 384 (2022), 1343–1407.

    Article  MathSciNet  Google Scholar 

  22. D. H. J. Polymath, Variants of the Selberg sieve, and bounded intervals containing many primes, Res. Math. Sci. 1 (2014), Article no. 12.

  23. W. A. F. Ruppert, On weakly almost periodic sets, Semigroup Forum 32 (1985), 267–281.

    Article  MathSciNet  Google Scholar 

  24. Y. Zhang, Bounded gaps between primes, Ann. of Math. (2) 179 (2014), 1121–1174.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is supported by NSF grant DMS-1764034 and by a Simons Investigator Award. The second author is supported by a grant from the Institute for Advanced Study and by ISF grant 2112/20. Part of this research was conducted at the Institute for Advanced Study. We thank Joel Moreira for discussions leading to Section 5, Vitaly Bergelson for informing us of the reference [8], James Maynard for informing us of the reference [21], Yemon Choi for supplying references on translation-finite sets, Mariusz Lemanczyk for pointing out a gap in a previous version of the proof of Corollary 5.2, Joel David Hamkins for providing an argument allowing us to strengthen that corollary, and Keiju Sono for a correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamar Ziegler.

Additional information

To Peter, with admiration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, T., Ziegler, T. Infinite partial sumsets in the primes. JAMA 151, 375–389 (2023). https://doi.org/10.1007/s11854-023-0323-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-023-0323-y

Navigation