Skip to main content
Log in

On wavelet polynomials and Weyl multipliers

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

For the wavelet type orthonormal systems ϕn, we establish a new bound

$${\left\| {\mathop {\max}\limits_{1 \le m \le n} \left| {\sum\limits_{j \in {G_m}} {\langle f,{\phi _j}\rangle} {\phi _j}} \right|} \right\|_p} \mathbin{\lower.3ex\hbox{$\buildrel<\over{\smash{\scriptstyle\sim}\vphantom{_x}}$}} \sqrt {\log (n + 1)} \cdot ||f||{_p},\,\,\,\,\,\,1<p<\infty,$$

where Gm ⊂ ℕ are arbitrary sets of indexes. Using this estimate, we prove that log n is an almost everywhere convergence Weyl multiplier for any orthonormal system of non-overlapping wavelet polynomials. It will also be remarked that log n is the optimal sequence in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-Y. A. Chang, J. M. Wilson and T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), 62–65.

    Article  MATH  Google Scholar 

  2. G. G. Gevorkyan, On Weyl factors for the unconditional convergence of series in the Franklin system, Mat. Zametki 41 (1987), 62–65.

    MathSciNet  Google Scholar 

  3. L. Grafakos, P. Honzík and A. Seeger, On maximal functions for Mikhlin–Hórmander multipliers, Adv. Math. 204 (2006), 62–65.

    Article  MATH  Google Scholar 

  4. G. Gripenberg, Wavelet bases in Lp(R), Studia Math. 106 (1993), 175–187.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Hernández and G. Weiss, A First Course on Wavelets, CRC Press, Boca Raton, FL, 1996.

    Book  MATH  Google Scholar 

  6. S. Kačmaž and G. Šteingauz, Teoriya ortogonalnykh ryadov, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1958.

    Google Scholar 

  7. G. A. Karagulyan, On systems of non-overlapping Haar polynomials, Ark. Math. 58 (2020), 62–65.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. A. Karagulyan, On Weyl multipliers of the rearranged trigonometric system, Sb. Math. 211 (2020), 62–65.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. A. Karagulyan, A sharp estimate for the majorant norm of a rearranged trigonometric system, Russian Math. Surveys 75 (2020), 62–65.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. A. Karagulyan and M. T. Lacey, On logarithmic bounds of maximal sparse operators, Math. Z. 294 (2020), 62–65.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. S. Kashin and A. A. Saakyan, Orthogonal Series, American Mathematical Society, Providence, RI, 1989.

    MATH  Google Scholar 

  12. D. E. Menshov, Sur les series de fonctions orthogonales I, Fund. Math. 4 (1923), 62–65.

    Google Scholar 

  13. Y. Meyer Ondelettes et opérateurs. II, in Actualités Mathématiques, Hermann, Paris, 1990, pp. 217–384.

    Google Scholar 

  14. P. F. X. Müller, Isomorphisms Between H1 Spaces, Birkhäuser, Basel, 2005.

    MATH  Google Scholar 

  15. E. M. Nikišin and P.L. Ul’janov, On absolute and unconditional convergence, Uspehi Mat. Nauk 22 (1967), 240–242.

    MathSciNet  Google Scholar 

  16. A. M. Olevskiı, Divergent Fourier series, Izv. Akad. Nauk SSSR Ser. Mat. 27 (1963), 62–65.

    MathSciNet  Google Scholar 

  17. S. N. Poleščuk, On the unconditional convergence of orthogonal series, Anal. Math. 7 (1981), 62–65.

    MathSciNet  Google Scholar 

  18. H. Rademacher, Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen, Math. Ann. 87 (1922), 62–65.

    Article  MATH  Google Scholar 

  19. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.

    MATH  Google Scholar 

  20. P. L. Ul’janov, Weyl multipliers for the unconditional convergence of orthogonal series, Dokl. Akad. Nauk SSSR 235 (1977), 62–65.

    MathSciNet  Google Scholar 

  21. P. Wojtaszczyk, Wavelets as unconditional bases in Lp(R), J. Fourier Anal. Appl. 5 (1999), 73–85.

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Wolnik, The wavelet type systems, in Approximation and Probability, Polish Academy of Sciences, Institute of Mathematics, Warsaw, 2006, pp. 397–406.

    Book  MATH  Google Scholar 

  23. A. Zygmund, Trigonometric Series. Vol. 2, Cambridge University Press, New York, 1959.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grigori A. Karagulyan.

Additional information

The second author was supported by the Science Committee of RA, in the framework of the research project 21AG-1A045.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamont, A., Karagulyan, G.A. On wavelet polynomials and Weyl multipliers. JAMA 150, 529–545 (2023). https://doi.org/10.1007/s11854-023-0281-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-023-0281-4

Navigation