Skip to main content
Log in

Strong damping wave equations defined by a class of self-similar measures with overlaps

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

The weak well-posedness of strong damping wave equations defined by fractal Laplacians is proved by using the Galerkin method. These fractal Laplacians are defined by self-similar measures with overlaps, such as the well-known infinite Bernoulli convolution associated with the golden ratio, the three-fold convolution of the Cantor measure, and a class of self-similar measures that we call essentially of finite type. In general, the structure of self-similar measures with overlaps is complicated and intractable. However, some important information about the structure of the above three measures can be obtained. We make use of this information to set up a framework for one-dimensional measures to discretize the associated strong damping wave equations, and use the finite element and central difference methods to obtain numerical approximations of the weak solutions. We also show that the numerical solutions converge to the actual solution and obtain the rate of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. J. Bird, S.-M. Ngai and A. Teplyaev, Fractal Laplacians on the unit interval, Ann. Sci. Math. Québec 27 (2003), 135–168.

    MathSciNet  MATH  Google Scholar 

  2. J. F.-C. Chan, S.-M. Ngai and A. Teplyaev, One-dimensional wave equations defined by fractal Laplacians, J. Anal. Math. 127 (2015), 219–246.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Chen and S.-M. Ngai, Eigenvalues and eigenfunctions of one-dimensional fractal Laplacians defined by iterated function systems with overlaps, J. Math. Anal. Appl. 364 (2010), 222–241.

    Article  MathSciNet  MATH  Google Scholar 

  4. E. B. Davies, Spectral Theory and Differential Operators, Cambridge University Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  5. A. Dekkers, A. Rozanova-Pierrat and A. Teplyaev, Mixed boundary valued problem for linear and nonlinear wave equations in domains with fractal boundaries, Calc. Var. Partial Differential Equations 61 (2022), Article no. 75.

  6. A. Dekkers and A. Rozanova-Pierrat, Dirichlet boundary valued problems for linear and nonlinear wave equations on arbitrary and fractal domains, J. Math. Anal. Appl. 512 (2022), Article no. 126089.

  7. D.-W. Deng and S.-M. Ngai, Eigenvalue estimates for Laplacians on measure spaces, J. Funct. Anal. 268 (2015), 2231–2260.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Deng and S.-M. Ngai, Differentiability of Lq-spectrum and multifractal decomposition by using infinite graph-directed IFSs, Adv. Math. 311 (2017), 190–237.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998.

    MATH  Google Scholar 

  10. W. Feller, On second order differential operators, Ann. of Math. (2) 61 (1955), 90–105.

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Feller, Generalized second order differential operators and their lateral conditions, Illinois J. Math. 1 (1957), 459–504.

    Article  MathSciNet  MATH  Google Scholar 

  12. U. Freiberg, Analytical properties of measure geometric Krein—Feller-operators on the real line, Math. Nachr. 260 (2003), 34–47.

    Article  MathSciNet  MATH  Google Scholar 

  13. U. Freiberg, Dirichlet forms on fractal subsets of the real line, Real Anal. Exchange 30 (2004/05), 589–603.

    Article  MathSciNet  MATH  Google Scholar 

  14. U. Freiberg, Spectral asymptotics of generalized measure geometric Laplacians on Cantor like sets, Forum Math. 17 (2005), 87–104.

    Article  MathSciNet  MATH  Google Scholar 

  15. U. Freiberg and J.-U. Löbus, Zeros of eigenfunctions of a class of generalized second order differential operators on the Cantor set, Math. Nachr. 265 (2004), 3–14.

    Article  MathSciNet  MATH  Google Scholar 

  16. U. Freiberg and M. Zähle, Harmonic calculus on fractals—a measure geometric approach, I, Potential Anal. 16 (2002), 265–277.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Fujita, A fractional dimension, self-similarity and a generalized diffusion operator, in Probabilistic Methods in Mathematical Physics (Katata/Kyoto, 1985), Academic Press, Boston, MA, 1987, pp. 83–90.

    Google Scholar 

  18. M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov processes, Walter de Gruyter, Berlin, 2011.

    MATH  Google Scholar 

  19. Q. Gu, J. Hu and S.-M. Ngai, Two-sided sub-Gaussian estimates of heat kernels on intervals for self-similar measures with overlaps, Commun. Pure Appl. Anal. 19 (2020), 641–676.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Hu, K.-S. Lau and S.-M. Ngai, Laplace operators related to self-similar measures ond, J. Funct. Anal. 239 (2006), 542–565.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713–747.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Ikehata, G. Todorova, B. Yordanov and Borislav, Wave equations with strong damping in Hilbert spaces, J. Differential Equations 254 (2013), 3352–3368.

    Article  MathSciNet  MATH  Google Scholar 

  23. I. S. Kac and M. G. Kreĭn, Criteria for the discreteness of the spectrum of a singular string, Izv. Vyss. Ucebn. Zaved. Matematika 1958 (1958), 136–153.

    MathSciNet  MATH  Google Scholar 

  24. I. S. Kac and M. G. Kreĭn, On the spectral functions of the string, Amer. Math. Soc. Transl. (2) 103 (1974), 19–102.

    MATH  Google Scholar 

  25. K.-S. Lau and S.-M. Ngai, Second-order self-similar identities and multifractal decompositions, Indiana Univ. Math. J. 49 (2000), 925–972.

    Article  MathSciNet  MATH  Google Scholar 

  26. H. A. Levine and J. Serrin, Global nonexistence theorems for quasilinear evolution equations with dissipation, Arch. Rational Mech. Anal. 137 (1997), 341–361.

    Article  MathSciNet  MATH  Google Scholar 

  27. H. P. McKean and D. B. Ray, Spectral distribution of a differential operator, Duke Math. J. 29 (1962), 281–292.

    Article  MathSciNet  MATH  Google Scholar 

  28. V. G. Maz’ja, Sobolev Spaces, Springer, Berlin, 1985.

    Book  Google Scholar 

  29. K. Naimark and M. Solomyak, The eigenvalue behaviour for the boundary value problems related to self-similar measures ond, Math. Res. Lett. 2 (1995), 279–298.

    Article  MathSciNet  MATH  Google Scholar 

  30. S.-M. Ngai, Spectral asymptotics of Laplacians associated with one-dimensional iterated function systems with overlaps, Canad. J. Math. 63 (2011), 648–688.

    Article  MathSciNet  MATH  Google Scholar 

  31. S.-M. Ngai and W. Tang, Eigenvalue asymptotics and Bohr’s formula for fractal Schrödinger operators, Pacific J. Math. 300 (2019), 83–119.

    Article  MathSciNet  MATH  Google Scholar 

  32. S.-M. Ngai and W. Tang, Schrödinger equations defined by a class of self-similar measures, submitted, http://archive.ymsc.tsinghua.edu.cn/pacm_download/558-Ngai-Tang_2021.pdf.

  33. S.-M. Ngai, W. Tang and Y. Xie, Spectral asymptotics of one-dimensional fractal Laplacians in the absence of second-order identities, Discrete Contin. Dyn. Syst. 38 (2018), 1849–1887.

    Article  MathSciNet  MATH  Google Scholar 

  34. S.-M. Ngai, W. Tang and Y. Xie, Wave propagation speed on fractals, J. Fourier Anal. Appl. 26 (2020), Paper No. 31, 38pp.

    MathSciNet  MATH  Google Scholar 

  35. S.-M. Ngai and Y. Xie, Lq-spectrum of self-similar measures with overlaps in the absence of second-order identities, J. Aust. Math. Soc. 106 (2019), 56–103.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.

    Book  MATH  Google Scholar 

  37. P. Pucci and J. Serrin, Global nonexistence for abstract evolution equations with positive initial energy, J. Differential Equations, 150 (1998), 203–214.

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Solomyak and E. Verbitsky, On a spectral problem related to self-similar measures, Bull. London Math. Soc. 27 (1995), 242–248.

    Article  MathSciNet  MATH  Google Scholar 

  39. G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1973.

    MATH  Google Scholar 

  40. R. S. Strichartz, A. Taylor and T. Zhang, Densities of self-similar measures on the line, Experiment. Math. 4 (1995), 101–128.

    Article  MathSciNet  MATH  Google Scholar 

  41. G. F. Webb, Existence and asymptotic behavior for a strongly damped nonlinear wave equation, Canad. J. Math. 23 (1980), 631–643.

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Zähle, Harmonic calculus on fractals—a measure geometric approach, II, Trans. Amer. Math. Soc. 357 (2005), 3407–3423.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Wang.

Additional information

The first author is supported by the NNSF of China (Grants No. 11901187 and 11771136).

The second author is supported by the NNSF of China (Grants No. 12001183 and 11831007), the Hunan Provincial NSF (Grant No. 2020JJ5097), and the SRF of Hunan Provincial Education Department (Grant No. 19B117).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Wang, Z. Strong damping wave equations defined by a class of self-similar measures with overlaps. JAMA 150, 249–274 (2023). https://doi.org/10.1007/s11854-022-0267-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-022-0267-7

Navigation