Skip to main content
Log in

Parabolic Harnack Estimates for anisotropic slow diffusion

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We prove a Harnack inequality for positive solutions of a parabolic equation with slow anisotropic spatial diffusion. After identifying its natural scalings, we reduce the problem to a Fokker—Planck equation and construct a self-similar Barenblatt solution. We exploit translation invariance to obtain positivity near the origin via a self-iteration method and deduce a sharp anisotropic expansion of positivity. This eventually yields a scale invariant Harnack inequality in an anisotropic geometry dictated by the speed of the diffusion coefficients. As a corollary, we infer Hölder continuity, an elliptic Harnack inequality and a Liouville theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Acerbi, G. Mingione and G. A. Seregin, Regularity results for parabolic systems related to a class of non-newtonian fluids, Ann. Inst. Henri Poincaré, Anal. Non Linéare 21 (2004), 25–60.

    Article  MathSciNet  MATH  Google Scholar 

  2. Y. A. Alkhutov, The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition, Differ. Uravn. 33 (1997), 1651–1660; English translation in Differ. Equ. 33 (1997), 1653–1663.

    MathSciNet  MATH  Google Scholar 

  3. Y. A. Alkhutov and V. V. Zhikov, Hölder continuity of solutions of parabolic equations with variable nonlinearity exponent, J. Math. Sci. (N.Y.) 179 (2011), 347–389.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Antontsev and S. Shmarev, Evolution PDEs with Nonstandard Growth Conditions, Atlantis Press, Paris, 2015.

    Book  MATH  Google Scholar 

  5. P. Baroni, M. Colombo and G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal. 121 (2015), 206–222.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Bousquet and L. Brasco, Lipschitz regularity for orthotropic functionals with nonstandard growth conditions, Rev. Mat. Iberoam. 36 (2020), 1989–2032.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. A. Carrillo and G. Toscani, Asymptotic L1-decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J. 49 (2000), 113–142.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Ciani and U. Guarnotta, Liouville rigidity and time-extrinsic Harnack estimates for an anisotropic slow diffusion, arXiv:2211.03357 [math.AP]

  9. S. Ciani and V. Vespri, An introduction to Barenblatt solutions for anisotropic p-Laplace equations, in Anomalies in Partial Differential Equations, Springer, Cham, 2021, pp. 99–125.

    Chapter  MATH  Google Scholar 

  10. E. DiBenedetto, Intrinsic Harnack type inequalities for solutions of certain degenerate parabolic equations, Arch. Rational Mech. Anal. 100 (1988), 129–147.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. DiBenedetto, U. Gianazza and V. Vespri, Local clustering of the non-zero set of functions in W1,1(E), Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 17 (2006), 223–225.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. DiBenedetto, U. Gianazza and V. Vespri, Harnack estimates for quasi-linear degenerate parabolic differential equations, Acta Math. 200 (2008), 181–209.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. DiBenedetto, U. Gianazza and V. Vespri, Forward, backward and elliptic Harnack inequalities for non-negative solutions to certain singular parabolic partial differential equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010), 385–422.

    MathSciNet  MATH  Google Scholar 

  14. E. DiBenedetto, U. Gianazza and V. Vespri, Harnack’s Inequality for Degenerate and Singular Parabolic Equations, Springer, New York, 2012.

    Book  MATH  Google Scholar 

  15. E. DiBenedetto and Y. C. Kwong, Intrinsic Harnack estimates and extinction profile for certain singular parabolic equations, Trans. Amer. Math. Soc. 330 (1992), 783–811.

    Article  MathSciNet  MATH  Google Scholar 

  16. F. G. Düzgün, S. Mosconi and V. Vespri, Anisotropic Sobolev embeddings and the speed of propagation for parabolic equations, J. Evol. Equ. 19 (2019), 845–882.

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Feo, J. L. Vázquez and B. Volzone, Anisotropic fast diffusion equations, Adv. Nonlinear Stud. 21 (2021), 523–555.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Giacomoni and G. Vallet, Some results about an anisotropic p(x)-Laplace-Barenblatt equation, Adv. Nonlinear Anal. 1 (2012), 277–298.

    MathSciNet  MATH  Google Scholar 

  19. M. Giaquinta, Growth conditions and regularity. A counterexample, Manuscr. Math. 59 (1987), 245–248.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Hadamard, Extension à l’ équation de la chaleur d’ un theoreme de A. Harnack, Rend. Circ. Mat. Palermo (2) 3 (1954), 337–346.

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Harjulehto, J. Kinnunen and T. Lukkari, Unbounded supersolutions of nonlinear equations with nonstandard growth, Bound. Value Probl. (2007), Article no. 48348.

  22. P. Harjulehto, T. Kuusi, T. Lukkari, N. Marola and M. Parviainen, Harnack’s inequality for quasiminimisers with nonstandard growth conditions, J. Math. Anal. Appl. 344 (2008), 504–520.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991), 311–361.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969.

    MATH  Google Scholar 

  25. V. Liskevich and I. I. Skrypnik, Harnack inequality and continuity of solutions to elliptic equations with nonstandard growth conditions and lower order terms, Ann. Mat. Pura Appl. (4) 189 (2010), 335–356.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Marcellini, Un exemple de solution discontinue d’un problème variationnel dans le case scalaire, Università di Firenze, 1987.

  27. P. Marcellini, Regularity under general and p, q-growth conditions, Dicrete Contin. Dyn. Syst. Ser. S 13 (2020), 2009–2031.

    MathSciNet  MATH  Google Scholar 

  28. E. Mascolo and G. Papi, Harnack inequality for minimizers of integral functionals with general growth conditions, NoDEA Nonlinear Differential Equations Appl. 3 (1996), 231–244.

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Mingione, Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math. 51 (2006) 355–426.

    Article  MathSciNet  MATH  Google Scholar 

  30. Y. Mingqi and L. Xiting, Boundedness of solutions of parabolic equations with anisotropic growth conditions, Canad. J. Math. 49 (1997), 798–809.

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Z. Mkrtychyan, Singular quasilinear parabolic equation arising in nonstationary filtration theory, Izv. Akad. Nau. Armyan. SSSR. Mat. 24 (1989), 103–116; English translation in Soviet J. Contemp. Math. 24 (1989), 1–13.

    MathSciNet  MATH  Google Scholar 

  32. J. Moser, A Harnack Inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101–134.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Ok, Harnack inequality for a class of functionals with non-standard growth via De Giorgi’s method, Adv. Nonlinear Anal. 7 (2018), 167–182.

    Article  MathSciNet  MATH  Google Scholar 

  34. B. Pini, Sulla soluzione generalizzata di Wiener per il primo problema di valori al contorno nel caso parabolico, Rend. Sem. Mat. Univ. Padova 23 (1954), 422–434.

    MathSciNet  MATH  Google Scholar 

  35. R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, American Mathematical Society, Providence, RI, 2013.

    Book  Google Scholar 

  36. O. Toivanen, Harnack’s inequality for general solutions with nonstandard growth, Ann. Acad. Sci. Fenn. Math. 37 (2012), 571–577.

    Article  MathSciNet  MATH  Google Scholar 

  37. J. L. Vázquez, The Porous Medium Equation: Mathematical Theory, Oxford Science Publications, Clarendon Press, Oxford, 2012.

    Google Scholar 

  38. M. Xu and Y. Z. Chen, Hölder continuity of weak solutions for parabolic equations with nonstandard growth conditions, Acta Math. Sin. (Engl. Ser.) 22 (2006), 793–806.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

S. Mosconi is partially supported by project PIACERI - Linea 2 and 3 of the University of Catania. Part of the paper was developed during a visit of the first and third authors at the Department of Mathematics and Computer Science of the University of Catania, Italy. We gratefully thank Matias Vestberg of the Uppsala University, Sweden, for his suggestions, which greatly improved a preliminary version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunra Mosconi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciani, S., Mosconi, S. & Vespri, V. Parabolic Harnack Estimates for anisotropic slow diffusion. JAMA 149, 611–642 (2023). https://doi.org/10.1007/s11854-022-0261-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-022-0261-0

Navigation