Skip to main content
Log in

Function spaces via fractional Poisson kernel on Carnot groups and applications

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We provide a new characterization of homogeneous Besov and Sobolev spaces in Carnot groups using the fractional heat kernel and Poisson kernel. We apply our results to study commutators involving fractional powers of the sub-Laplacian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Agrachev, D. Barilari and U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge University Press, Cambridge, 2020.

    MATH  Google Scholar 

  2. P. Alonso-Ruiz, F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam and A. Teplyaev, Besov class via heat semigroup on Dirichlet spaces I: Sobolev type inequalities, J. Funct. Anal. 278 (2020), Article no. 108459.

  3. P. Alonso-Ruiz, F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam and A. Teplyaev, Besov class via heat semigroup on dirichlet spaces II: BV functions and Gaussian heat kernel estimates, Calc. Var. Partial Differential Equations 59 (2020), Article no. 103.

  4. P. Alonso-Ruiz, F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam and A. Teplyaev, Besov class via heat semigroup on dirichlet spaces III: BV functions and sub-Gaussian heat kernel estimates, Calc. Var. Partial Differential Equations 60 (2021), Article no. 170.

  5. H. Bahouri and I. Gallagher, Paraproduit sur le groupe de Heisenberg et applications, Rev. Mat. Iberoamericana 17 (2001), 69–105.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Bahouri, C. F. Kammerer and I. Gallagher, Phase-space analysis and pseudodifferential calculus on the Heisenberg group, Astérisque 342 (2012).

  7. A. V. Balakrishnan, On the Powers of the Infinitesimal Generators of Groups and Semigroups of Linear Bounded Transformations, PH.D. Thesis, University of Southern California, Los Angeles, CA, 1954.

    Google Scholar 

  8. A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math. 10 (1960), 419–437.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Baudoin and N. Garofalo, A note on the boundedness of Riesz transform for some subelliptic operators, Int. Math. Res. Not. IMRN 2013 (2013), 398–421.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Bogdan, A. Stos and P. Sztonyk, Harnack inequality for stable processes on d-sets, Studia Math. 158 (2003), 163–198.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, Stratified Lie Groups and Potential Theory for their Sub-Laplacians, Springer, Berlin, 2007.

    MATH  Google Scholar 

  12. H.-Q Bui, T. Candy, A characterization of the Besov—Lipschitz and Triebel—Lizorkin spaces using Poisson like kernels, in Functional Analysis, Harmonic Analysis, and Image Processing: A Collection of Papers in Honor of Björn Jawerth, American Mathematical Society, Providence, RI, 2017, pp. 109–141.

    Google Scholar 

  13. H.-Q. Bui, M. Paluszyński and M. H. Taibleson, A note on the Besov—Lipschitz and Triebel—Lizorkin spaces, in Harmonic analysis and operator theory (Caracas, 1994), American Mathematical Society, Providence, RI, 1995, pp. 95–101.

    Chapter  MATH  Google Scholar 

  14. H.-Q. Bui, M. Paluszynski and M. H. Taibleson, Characterization of the Besov—Lipschitz and Triebel—Lizorkin spaces, The case q < 1, J. Fourier Anal. Appl. 3 (1997), 837–846.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations 32 (2007), 1245–1260.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Cao and A. Grigor’yan, Heat kernels and Besov spaces on metric measure spaces, J. Anal. Math. 148 (2022), 637–680.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Capogna, D. Danielli, S. Pauls and J. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Birkhäuser, Basel, 2007.

    MATH  Google Scholar 

  18. S. Chanillo, A note on commutators, Indiana Univ. Math. J. 31 (1982), 7–16.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Christ, Lp bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc. 328 (1991), 73–81.

    MathSciNet  MATH  Google Scholar 

  20. F. Da Lio and T. Rivière, Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps, Adv. Math. 227 (2011), 1300–1348.

    Article  MathSciNet  MATH  Google Scholar 

  21. F. Da Lio and T. Rivière, Three-term commutator estimates and the regularity of 1/2-harmonic maps into spheres, Anal. PDE 1 (2011), 149–190.

    MathSciNet  MATH  Google Scholar 

  22. F. Ferrari and B. Franchi, Harnack inequality for fractional sub-Laplacians in Carnot groups, Math. Z. 279 (2015), 435–458.

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Ferrari, M. Miranda, D. Pallara, A. Pinamonti and Y. Sire, Fractional Laplacians, perimeters and Heat semigroups in Carnot groups, Discrete Contin. Dyn. Syst. Ser. S 11 (2018), 477–491.

    MathSciNet  MATH  Google Scholar 

  24. G. Folland, A fundamental solution for a subelliptic operator. Bull. Amer. Math. Soc. 79 (1973), 373–376.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161–207.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, NJ; University of Tokyo Press, Tokyo, 1982.

    MATH  Google Scholar 

  27. R. L. Frank, M. del Mar González, D. D. Monticelli and J. Tan, An extension problem for the CR fractional Laplacian, Adv. Math. 270 (2015), 97–137.

    Article  MathSciNet  MATH  Google Scholar 

  28. I. Gallagher and Y. Sire, Besov algebras on Lie groups of polynomial growth, Studia Math. 212 (2012), 119–139.

    Article  MathSciNet  MATH  Google Scholar 

  29. N. Garofalo, Some properties of sub-Laplaceans, Electron. J. Differential Equations 25 (2018), 103–131.

    MathSciNet  MATH  Google Scholar 

  30. A. Gover and C. R. Graham, CR invariant powers of the sub-Laplacian, J. Reine Angew. Math. 583 (2005), 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  31. C. R. Graham, R. Jenne, L. J. Mason and G. A. J. Sparling, Conformally invariant powers of the Laplacian I. Existence, J. Lond. Math. Soc. (2) 46 (1992), 557–565.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Gromov, Carnot—Caratheodory spaces seen from within, Progr. Math. 144 (1996), 79–323.

    MathSciNet  MATH  Google Scholar 

  33. C. Guidi, A. Maalaoui and V. Martino, Palais—Smale sequences for the fractional CR Yamabe functional and multiplicity results, Calc. Var. Partial Differential Equations 57 (2018), Article no. 152.

  34. C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg—de Vries equation via the contraction principle, Comm. Pure Appl. Math 46 (1993), 527–620.

    Article  MathSciNet  MATH  Google Scholar 

  35. E. Lenzmann and A. Schikorra, Sharp commutator estimates via harmonic extensions, Nonlinear Anal. 193 (2020), Article no. 111375.

  36. A. Maalaoui, A note on commutators of the fractional sub-Laplacian on carnot groups. Commun. Pure Appl. Anal. 18 (2019), 435–453.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Martini, Spectral theory for commutative algebras of differential operators on Lie groups, J. Funct. Anal. 260 (2011), 2767–2814.

    Article  MathSciNet  MATH  Google Scholar 

  38. R. Montgomery, A Tour of Subriemannian Geometries, their Geodesics and Applications, American Mathematical Society, Providence, RI, 2006.

    Book  MATH  Google Scholar 

  39. T. Muramatsu, On imbedding theorems for Besov spaces of functions defined in general regions, Publ. Res. Inst. Math. Sci. Kyoto Univ. 7 (1971/1972), 261–285.

    Article  MathSciNet  Google Scholar 

  40. A. Pinamonti and G. Speight, A measure zero universal differentiability set in the Heisenberg group, Math. Ann. 368 (2017), 233–278.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Pinamonti, G. Speight and S. Zimmerman, A Cm Whitney extension theorem for horizontal curves in the Heisemberg group, Trans. Amer. Math. Soc. 371 (2019), 8971–8992.

    Article  MathSciNet  MATH  Google Scholar 

  42. L. Roncala and S. Thangavelub, Hardy’s inequality for fractional powers of the sublaplacian on the Heisenberg group. Adv. Math. 302 (2016), 106–158.

    Article  MathSciNet  Google Scholar 

  43. K. Saka, Besov spaces and Sobolev spaces on a nilpotent Lie group, Tohoku Math. J. (2) 31 (1979), 383–437.

    MathSciNet  MATH  Google Scholar 

  44. A. Schikorra, ε-regularity for systems involving non-local, antisymmetric operators, Calc. Var. Partial Differential Equations 54 (2015), 3531

    Article  MathSciNet  MATH  Google Scholar 

  45. E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1995.

    Google Scholar 

  46. S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Birkhäuser, Boston, MA, 1998.

    Book  MATH  Google Scholar 

  47. N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on Groups, Cambridge University Press, Cambridge, 1992.

    MATH  Google Scholar 

  48. K. Yosida, Functional Analysis, Springer, Berlin—Heidelberg, 1980.

    MATH  Google Scholar 

Download references

Acknowledgements

The authors want to thank the referee for his/her careful reading of the paper and his/her insightful comments and suggestions that led to its improvement.

A. Pinamonti is a member of Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

This work was supported by a grant from the Simons Foundation (#576219, G. Speight).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Maalaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maalaoui, A., Pinamonti, A. & Speight, G. Function spaces via fractional Poisson kernel on Carnot groups and applications. JAMA 149, 485–527 (2023). https://doi.org/10.1007/s11854-022-0255-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-022-0255-y

Navigation