Skip to main content
Log in

The Cauchy problem for operators with triple effectively hyperbolic characteristics: Ivrii’s conjecture

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Ivrii’s conjecture asserts that the Cauchy problem is C well-posed for any lower order term if every singular point of the characteristic variety is effectively hyperbolic. An effectively hyperbolic singular point is at most a triple characteristic. If every characteristic is at most double, this conjecture has been proved in the 1980’s. In this paper we prove the conjecture for the remaining cases, that is for operators with triple effectively hyperbolic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Beals, Characterization of pseudodifferential operators and applications, Duke Math. J. 44 (1977), 45–57.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Bernardi, A. Bove and V. Petkov, Cauchy problem for effectively hyperbolic operators with triple characteristics of variable multiplicity, J. Hyperbolic Differ. Equ. 12 (2015), 535–579.

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Bernardi and T. Nishitani, Counterexamples to Cwell posedness for some hyperbolic operators with triple characteristics, Proc. Japan Acad. Ser. A Math. Sci. 91 (2015), 19–24.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. D. Bronshtein, Smoothness of roots of polynomials depending on parameters, Sib. Mat. Zh. 20 (1979), 493–501

    MathSciNet  Google Scholar 

  5. M. D. Bronshtein, Smoothness of roots of polynomials depending on parameters, English translation: Sib. Math. J. 20 (1980), 347–352.

    Google Scholar 

  6. J. V. Egorov, Canonical transformations and pseudodifferential operators, Trudy Moskov Mat. Obsc. 24 (1971), 3–28

    MathSciNet  MATH  Google Scholar 

  7. J. V. Egorov, Canonical transformations and pseudodifferential operators, English translation: Trans. Moscow Math. Soc. 24 (1971), 3–28.

    MathSciNet  MATH  Google Scholar 

  8. L. Hörmander, The Cauchy problem for differential equations with double characteristics, J. Anal. Math. 32 (1977), 118–196.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Hörmander, The Analysis of Linear Partial Differential Operators, III, Springer, Berlin, 1985.

    MATH  Google Scholar 

  10. L. Hörmander, The Analysis of Linear Partial Differential Operators, I, Springer, Berlin, 1990.

    MATH  Google Scholar 

  11. V. Ivrii, Sufficient conditions for regular and completely regular hyperbolicity, Tr. Mosk. Mat. Obs. 33 (1975), 3–65

    MathSciNet  Google Scholar 

  12. V. Ivrii, Sufficient conditions for regular and completely regular hyperbolicity, English translation: Trans. Mosc. Math. Soc. 33 (1978), 1–65.

    MATH  Google Scholar 

  13. V. Ivrii, The well-posed Cauchy problem for non-strictly hyperbolic operators, III: The energy integral, Tr. Mosk. Mat. Obs. 34 (1977), 151–170

    Google Scholar 

  14. V. Ivrii, The well-posed Cauchy problem for non-strictly hyperbolic operators, III: The energy integral, English translation: Trans. Mosc. Math. Soc. 34 (1978), 149–168.

    Google Scholar 

  15. V. Ivrii, Linear hyperbolic equations, in Partial Differential Equations IV, Springer, Berlin-Heidelberg, 1993, pp. 149–235.

    Chapter  Google Scholar 

  16. V. Ivrii and V. Petkov, Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well posed, Uspekhi Mat. Nauk 29 (1974), 3–70

    MATH  Google Scholar 

  17. V. Ivrii and V. Petkov, Necessary conditions for the Cauchy problem for non-strictly hyperbolic equations to be well posed, English translation: Russ. Math. Surv. 29 (1974), 1–70.

    MATH  Google Scholar 

  18. N. Iwasaki, The Cauchy problem for effectively hyperbolic equations (a special case), J. Math. Kyoto Univ. 23 (1983), 503–562.

    MathSciNet  MATH  Google Scholar 

  19. N. Iwasaki, The Cauchy problem for effectively hyperbolic equations (a standard type), Publ. Res. Inst. Math. Sci. 20 (1984), 551–592.

    Article  MathSciNet  MATH  Google Scholar 

  20. N. Iwasaki, The Cauchy problem for effectively hyperbolic equations (general case), J. Math. Kyoto Univ. 25 (1985), 727–743.

    MathSciNet  MATH  Google Scholar 

  21. E. Jannelli, The hyperbolic symmetrizer: theory and applications, in Advances in Phase Space Analysis of Partial Differential Equations, Birkhäuser, Boston, MA, 2009, pp. 113–139.

    Chapter  Google Scholar 

  22. K. Kajitani, S. Wakabayashi and T. Nishitani, The Cauchy problem for hyperbolic operators of strong type, Duke Math. J. 75 (1994), 353–408.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Komatsu, T. Nishitani, Continuation of bicharacteristics for effectively hyperbolic operators, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), 109–112.

    Article  MathSciNet  MATH  Google Scholar 

  24. P. D. Lax, Asymptotic solutions of oscillatory initial value problem, Duke Math. J. 24 (1957), 627–646.

    Article  MathSciNet  MATH  Google Scholar 

  25. N. Lerner, Metrics on the Phase Space and Non-selfadjoint Pseudo-Differential Operators, Birkhäuser, Basel, 2010.

    Book  MATH  Google Scholar 

  26. R. Melrose, The Cauchy problem for effectively hyperbolic operators, Hokkaido Math. J. 12 (1983), 371–391.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Mizohata, Some remarks on the Cauchy problem, J. Math. Kyoto Univ. 1 (1961), 109–127.

    MathSciNet  MATH  Google Scholar 

  28. T. Nishitani, On the finite propagation speed of wave front sets for effectively hyperbolic operators, Sci. Rep. College Gen. Ed. Osaka Univ. 32 (1983), 1–7.

    MathSciNet  MATH  Google Scholar 

  29. T. Nishitani, On wave front sets of solutions for effectively hyperbolic operators, Sci. Rep. College Gen. Ed. Osaka Univ. 32 (1983), 1–7.

    MathSciNet  MATH  Google Scholar 

  30. T. Nishitani, A note on reduced forms of effectively hyperbolic operators and energy integrals, Osaka J. Math. 21 (1984), 843–850.

    MathSciNet  MATH  Google Scholar 

  31. T. Nishitani, Local energy integrals for effectively hyperbolic operators. I, II, J. Math. Kyoto Univ. 24 (1984), 623–658, 659–666.

    MathSciNet  MATH  Google Scholar 

  32. T. Nishitani, The effectively hyperbolic Cauchy problem, in The Hyperbolic Cauchy Problem, Springer, Berlin-Heidelberg, 1991, pp. 71–167.

    Chapter  MATH  Google Scholar 

  33. T. Nishitani, Notes on symmetrization by Bézoutian, Boll. Unione Mat. Ital. 13 (2020), 417–428.

    Article  MathSciNet  MATH  Google Scholar 

  34. T. Nishitani, Diagonal symmetrizers for hyperbolic operators with triple characteristics, Math. Ann. 383 (2022), 529–569.

    Article  MathSciNet  MATH  Google Scholar 

  35. T. Nishitani and V. Petkov, Cauchy problem for effectively hyperbolic operators with triple characteristics, J. Math. Pures Appl. 123 (2019), 201–228.

    Article  MathSciNet  MATH  Google Scholar 

  36. T. Nishitani and V. Petkov, Cauchy problem for effectively hyperbolic operators with triple characteristics, Osaka J. Math. 57 (2020), 597–615.

    MathSciNet  MATH  Google Scholar 

  37. O. A. Oleinik, On the Cauchy problem for weakly hyperbolic equations, Comm. Pure Appl. Math. 23 (1970), 569–586.

    Article  MathSciNet  Google Scholar 

  38. M. E. Taylor, Pseudodifferential Operators, Princeton University Press, Princeton, NJ, 1981.

    Book  MATH  Google Scholar 

Download references

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number JP20K03679.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuo Nishitani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishitani, T. The Cauchy problem for operators with triple effectively hyperbolic characteristics: Ivrii’s conjecture. JAMA 149, 167–237 (2023). https://doi.org/10.1007/s11854-022-0249-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-022-0249-9

Navigation