Skip to main content
Log in

A heat equation approach to intertwining

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In this paper we present anew approach based on the heat equation and extension problems to some intertwining formulas arising in conformal CR geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Balakrishnan, An operational calculus for infinitesimal generators of semigroups, Trans. Amer. Math. Soc. 91 (1959), 330–353.

    MathSciNet  MATH  Google Scholar 

  2. H. Baum and A. Juhl, Conformal Differential Geometry, Birkhäuser, Basel, 2010.

    Book  MATH  Google Scholar 

  3. T. P. Branson, Sharp inequalities, the functional determinant, and the complementary series, Trans. Amer. Math. Soc. 347 (1995), 3671–3742.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. P. Branson, Spectral theory of invariant operators, sharp inequalities, and representation theory, Rend. Circ. Mat. Palermo (2) Suppl. 46 (1997), 29–54.

    MathSciNet  MATH  Google Scholar 

  5. T. P. Branson, L. Fontana and C. Morpurgo, Moser-Trudinger and Beckner-Onofri’s inequalities on the CR sphere, Ann. of Math. (2) 177 (2013), 1–52.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Caffarelli and L. Silvestre, An extension problem related, to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245–1260.

    Article  MathSciNet  MATH  Google Scholar 

  7. S.-Y. A. Chang and M. d. M. González, Fractional Laplacian in conformal geometry, Adv. Math. 226 (2011), 1410–1432.

    Article  MathSciNet  MATH  Google Scholar 

  8. W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (2006), 330–343.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Corwin and F. P. Greenleaf, Representations of Nilpotent Lie Groups and their Applications, Part I: Basic Theory and Examples, Cambridge University Press, Cambridge, 1990.

    MATH  Google Scholar 

  10. M. Cowling, Unitary and uniformly bounded representations of some simple Lie groups, in Harmonic Analysis and Group Representations, Liguori Editore, Naples, 1982, pp. 49–128.

    Google Scholar 

  11. M. Cowling, A. H. Dooley, A. Korányi and F. Ricci, H-type groups and Iwasawa decompositions, Adv. Math. 87 (1991), 1–41.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Cowling and U. Haagerup, Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math. 96 (1989), 507–549.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Ferrari and B. Franchi, Harnack inequality for fractional sub-Laplacians in Carnot groups, Math. Z. 279 (2015), 435–458.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161–207.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. L. Frank and E. H. Lieb, Sharp constants in several inequalities on the Heisenberg group, Ann. of Math. (2) 176 (2012), 349–381.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. L. Frank, M. d. M. González, D. Monticelli and J. Tan, An extension problem for the CR fractional Laplacian, Adv. Math. 270 (2015), 97–137.

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Garofalo and D. Vassilev, Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot groups, Math. Ann. 318 (2000), 453–516.

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Garofalo and D. Vassilev, Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J. 106 (2001), 411–448.

    Article  MathSciNet  MATH  Google Scholar 

  19. N. Garofalo, Some properties of sub-Laplaceans, in Proceedings of the International Conference “Two nonlinear days in Urbino 2017”, Texas State University, Department of Mathematics, San Marcos, TX, 2018, pp. 103–131.

    Google Scholar 

  20. N. Garofalo, Fractional thoughts, in New Developments in the Analysis of Nonlocal Operators, American Mathematical Society, Providence, RI, 2019, pp. 1–135.

    Google Scholar 

  21. N. Garofalo and G. Tralli, Feeling the heat in a group of Heisenberg type, Adv. Math. 381 (2021), 107635.

    Article  MathSciNet  MATH  Google Scholar 

  22. N. Garofalo and G. Tralli, Heat kernels for a class of hybrid evolution equations, Potential Anal., to appear, DOI: https://doi.org/10.1007/s11118-022-10003-2.

  23. M. d. M. González, Recent progress on the fractional Laplacian in conformal geometry, in Recent Developments in Nonlocal Theory, De Gruyter, Berlin, 2018, pp. 236–273.

    Google Scholar 

  24. C. Guidi, A. Maalaoui and V. Martino, Palais-Smale sequences for the fractional CR Yamabe functional and multiplicity results, Calc. Var. Partial Differential Equations 57 (2018), Article no. 152.

  25. L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Jerison and J. M. Lee, The Yamabe problem on CR manifolds, J. Differential Geom. 25 (1987), 167–197.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Jerison and J. M. Lee, Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc. 1 (1988), 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), 147–153.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. W. Knapp and E. M. Stein, Intertwining operators for semisimple groups, Ann. of Math. (2) 93 (1971), 489–578.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Kristály, Nodal solutions for the fractional Yamabe problem on Heisenberg groups, Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), 771–788.

    Article  MathSciNet  MATH  Google Scholar 

  31. E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2) 118 (1983), 349–374.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Riesz, Intégrales de Riemann-Liouville et potentiels, Acta Sci. Math. Szeged, 9 (1938), 1–42.

    MATH  Google Scholar 

  33. L. Roncal and S. Thangavelu, Hardy’s inequality for fractional powers of the sublaplacian on the Heisenberg group, Adv. Math. 302 (2016), 106–158.

    Article  MathSciNet  MATH  Google Scholar 

  34. L. Roncal and S. Thangavelu, An extension problem and trace Hardy inequality for the sublaplacian on H-type groups, Int. Math. Res. Not. IMRN 2020 (2020), 4238–4294.

    Article  MATH  Google Scholar 

  35. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970.

    MATH  Google Scholar 

  36. N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on Groups, Cambridge University Press, Cambridge, 1992.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Tralli.

Additional information

Both authors are supported in part by a Progetto SID: “Non-local Sobolev and isoperimetric inequalities”, University of Padova, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garofalo, N., Tralli, G. A heat equation approach to intertwining. JAMA 149, 113–134 (2023). https://doi.org/10.1007/s11854-022-0246-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-022-0246-z

Navigation