Skip to main content
Log in

Semilinear nonlocal elliptic equations with source term and measure data

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Recently, several works have been undertaken in an attempt to develop a theory for linear or sublinear elliptic equations involving a general class of nonlocal operators characterized by mild assumptions on the associated Green kernel. In this paper, we study the Dirichlet problem for superlinear equation (E) \(\mathbb{L}u=u^{P}+\delta\mu\) in a bounded domain Ω with homogeneous boundary or exterior Dirichlet condition, where p > 1 and λ > 0. The operator \(\mathbb{L}\) belongs to a class of nonlocal operators including typical types of fractional Laplacians and the datum μ is taken in the optimal weighted measure space. The interplay between the operator \(\mathbb{L}\), the source term up and the datum μ yields substantial difficulties and reveals the distinctive feature of the problem. We develop a unifying technique based on a fine analysis on the Green kernel, which enables us to construct a theory for semilinear equation (E) in measure frameworks. A main thrust of the paper is to provide a fairly complete description of positive solutions to the Dirichlet problem for (E). In particular, we show that there exist a critical exponent p* and a threshold value λ* such that the multiplicity holds for 1 < p < p* and 0 <λ < λ*, the uniqueness holds for 1 < p < p* and λ = λ*, and the nonexistence holds in other cases. Various types of nonlocal operators are discussed to exemplify the wide applicability of our theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Abatangelo, Large Solutions for Fractional Laplacian Operators, Ph.D. Thesis, 2015.

  2. N. Abatangelo, Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian, Discrete Contin. Dyn. Syst. 35 (2015), 5555–5607.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Abatangelo and L. Dupaigne, Nonhomogeneous boundary conditions for the spectral fractional Laplacian, Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), 439–467.

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Abatangelo, D. Gómez-Castro and J. L. Vázquez, Singular boundary behaviour and large solutions for fractional elliptic equations, arXiv:1910.00366v2 [math.AP]

  5. V. Ambrosio, Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator, J. Math. Phys. 57 (2016), 051502, 18 pp.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, Springer, Cham, 2016.

    MATH  Google Scholar 

  8. C. Bandle, V. Moroz and W. Reichel, Boundary blowup type sub-solutions to semilinear elliptic equations with Hardy potential, J. Lond. Math. Soc. (2) 77 (2008), 503–523.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. K. Bhattacharyya, Distributions, De Gruyter, Berlin, 2012.

    Book  Google Scholar 

  10. M.-F. Bidaut-Véron and L. Vivier, An elliptic semilinear equation with source term involving boundary measures: the subcritical case, Rev. Mat. Iberoamericana 16 (2000), 477–513.

    Article  MathSciNet  MATH  Google Scholar 

  11. M.-F. Bidaut-Véron and C. Yarur, Semilinear elliptic equations and systems with measure data: existence and a priori estimates, Adv. Differential Equations 7 (2002), 257–296.

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Bogdan, K. Burdzy and Z.-Q. Chen, Censored stable processes, Probab. Theory Related Fields 127 (2003), 89–152.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Bonforte, A. Figalli and J. L. Vázquez, Sharp boundary behaviour of solutions to semilinear nonlocal elliptic equations, Calc. Var. Partial Differential Equations 57 (2018), 34 pp.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Bonforte, Y. Sire and J. L. Vézquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst. 35 (2015), 5725–5767.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Bonforte and J. L. Vézquez, Quantitative local and global a priori estimates for fractional nonlinear diffusion equations, Adv.Math. 250 (2014), 242–284.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Bonforte and J. L. Vazquez, A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains, Arch. Ration. Mech. Anal. 218 (2015), 317–362.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Brandle, E. Colorado, A. D. Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), 39–71.

    Article  MathSciNet  MATH  Google Scholar 

  18. L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), 767–807.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Capella, J. Davila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Comm. Partial Differential Equations 36 (2011), 1353–1384.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Chan, D. Gomez-Castro and J. L. Vázquez, Blow-up phenomena in nonlocal eigenvalue problems: when theories of L1and L2meet, J. Funct. Anal. 280 (2021), no. 108845.

  21. H. Chan, D. Gómez-Castro and J. L. Vézquez, Singular solutions for fractional parabolic boundary value problems, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 116 (2022), no. 159.

  22. H. Chen, The Dirichlet elliptic problem involving regional fractional Laplacian, J. Math. Phys. 59 (2018), 071504, 19 pp.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Chen, P. Felmer and L. Véron, Elliptic equations involving general subcritical source nonlinearity and measures, arXiv:1409.3067 [math.AP]

  24. Z.-Q. Chen and R. Song, Intrinsic ultracontractivity and conditional gauge for symmetric stable processes, J. Funct. Anal. 150 (1997), 204–239.

    Article  MathSciNet  MATH  Google Scholar 

  25. Z.-Q. Chen and R. Song, Hardy inequality for censored stable processes, Tohoku Math. J. (2) 55 (2003), 439–450.

    Article  MathSciNet  MATH  Google Scholar 

  26. Z.-Q. Chen, P. Kim and R. Song, Two-sided heat kernel estimates for censored stable-like processes, Probab. Theory Related Fields. 44 (2010), 361–399.

    Article  MathSciNet  MATH  Google Scholar 

  27. Z.-Q. Chen, P. Kim and R. Song, Dirichlet heat kernel estimates for (−Δ)α/2 + (− Δ)β/2, Illinois J. Math. 54 (2012), 1357–1392.

    Google Scholar 

  28. H. Chen and A. Quaas, Classification of isolated singularities of nonnegative solutions to fractional semi-linear elliptic equations and the existence results, J. Lond. Math. Soc. (2) 97 (2018), 196–221.

    Article  MathSciNet  MATH  Google Scholar 

  29. H. Chen and L. Veron, Semilinear fractional elliptic equations involving measures, J. Differential Equations 257 (2014), 1457–1486.

    Article  MathSciNet  MATH  Google Scholar 

  30. Z.-Q. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann. 312 (1998), 465–501.

    Article  MathSciNet  MATH  Google Scholar 

  31. Z.-Q. Chen and R. Song, General gauge and conditional gauge theorems, Ann. Probab., 30 (2002), 1313–1339.

    Article  MathSciNet  MATH  Google Scholar 

  32. E.B. Davies, One-parameter Semigroups, Academic Press, London-New York, 1980.

    MATH  Google Scholar 

  33. A. Dhifli, H. Mâagli, and M. Zribi, On the subordinate killed b.m in bounded domains and existence results for nonlinear fractional Dirichlet problems, Math. Ann. 352 (2011), 259–291.

    Article  MathSciNet  MATH  Google Scholar 

  34. S. Dipierro, M. Medina, I. Peral and E. Valdinoci, Bifurcation results for a fractional elliptic equation with critical exponent inn, Manuscripta Math. 153 (2017), 183–230.

    Article  MathSciNet  MATH  Google Scholar 

  35. L. Dupaigne, Stable solutions of Elliptic Partial Differential Equations, Chapman & Hall/CRC, Boca Raton, FL, 2011.

    Book  MATH  Google Scholar 

  36. M. M. Fall, Regional fractional Laplacians: Boundary regularity, J. Differential Equations 320 (2022), 598–658.

    Article  MathSciNet  MATH  Google Scholar 

  37. M. M. Fall and V. Felli, Unique continuation properties for relativistic Schrödinger operators with a singular potential, Discrete Contin. Dyn. Syst. 35 (2015), 5827–5867.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Ferrero and C. Saccon, Existence and multiplicity results for semilinear equations with measure data, Topol. Methods Nonlinear Anal. 28 (2006), 285–318.

    MathSciNet  MATH  Google Scholar 

  39. S. Filippas, L. Moschini and A. Tertikas, Sharp two-sided heat kernel estimates for critical Schrodinger operators on bounded domains, Commun. Math. Phys. 273 (2007), 237–281.

    Article  MathSciNet  MATH  Google Scholar 

  40. N. Garofalo, Fractional thoughts, in New Developments in the Analysis of Nonlocal Operators, American Mathematical Society, Providence, RI, 2019, pp. 1–135.

    Google Scholar 

  41. P. Gatto and J. S. Hesthaven, Numerical approximation of the fractional Laplacian via Hp, with an application to image denoising, J. Sci. Comput. 65 (2014), 249–270.

    Article  MathSciNet  MATH  Google Scholar 

  42. B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), 525–598.

    Article  MathSciNet  MATH  Google Scholar 

  43. K. T. Gkikas and L. Véron, Boundary singularities of solutions of semilinear elliptic equations with critical Hardy potentials, Nonlinear Anal. 121 (2015), 469–540.

    Article  MathSciNet  MATH  Google Scholar 

  44. K. T. Gkikas and P.-T. Nguyen, On the existence of weak solutions of semilinear elliptic equations and systems with Hardy potentials, J. Differential Equations 266 (2019), 833–875.

    Article  MathSciNet  MATH  Google Scholar 

  45. D. Gómez-Castro and J. L. Vázquez, The fractional Schródinger equation with singular potential and measure data, Discrete Contin. Dyn. Syst. 39 (2019), 7113–7139.

    Article  MathSciNet  MATH  Google Scholar 

  46. L. Grafakos, Classical Fourier Analysis, Springer, New York, 2009.

    MATH  Google Scholar 

  47. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics, SIAM, Philadelphia, PA, 2011.

    Book  MATH  Google Scholar 

  48. P. Kim, R. Song and Z. Vondraček, Potential theory of subordinate Brownian motions revisited, in Stochastic Analysis and Applications to Finance, World Scientific, Hackensack, NJ, 2012, pp. 243–290.

    Chapter  Google Scholar 

  49. P. Kim, R. Song and Z. Vondraček, Potential theory of subordinate killed Brownian motion, Trans. Amer. Math. Soc. 371 (2019), 3917–3969.

    Article  MathSciNet  MATH  Google Scholar 

  50. P. Kim, R. Song and Z. Vondraček, On the boundary theory of subordinate killed Levy processes, Potential Anal 53 (2020), 131–181.

    Article  MathSciNet  MATH  Google Scholar 

  51. P. Kim, R. Song and Z. Vondraček, On potential theory of Markov processes with jump kernels decaying at the boundary, Potential Anal. (2021), https://doi.org/10.1007/s11118-021-09947-8

  52. J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer, Berlin-Heidelberg, 1972.

    Book  MATH  Google Scholar 

  53. P. Lions, Isolated singularities in semilinear problems, J. Differential Equations 38 (1980), 441–450.

    Article  MathSciNet  MATH  Google Scholar 

  54. M. Marcus and L. Veron, Nonlinear Second Order Elliptic Equations Involving Measures, De Gruyter, Berlin, 2014.

    MATH  Google Scholar 

  55. M. Marcus and P.-T. Nguyen, Moderate solutions ofsemilinear elliptic equations with Hardy potential, Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), 69–88.

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Montenegro and A. C. Ponce, The sub-supersolution method for weak solutions, Proc. Amer. Math. Soc. 136 (2008), 2429–2438.

    Article  MathSciNet  MATH  Google Scholar 

  57. Y. Naito and T. Sato, Positive solutions for semilinear elliptic equations with singular forcing terms, J. Differential Equations 235 (2007), 439–483.

    Article  MathSciNet  MATH  Google Scholar 

  58. E. D. Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521–573.

    Article  MathSciNet  MATH  Google Scholar 

  59. X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl. 101 (2014), 275–302.

    Article  MathSciNet  MATH  Google Scholar 

  60. M. Ryznar, Estimates of Green function for relativistic α-stable process, Potential Anal. 17 (2003), 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  61. R. L. Schilling, R. Song and Z. Vondracek, Bernstein Functions, De Gruyter, Berlin, 2012.

    Book  MATH  Google Scholar 

  62. R. Servadei, A critical fractional Laplace equation in the resonant case, Topol. Methods Nonlinear Anal. 43 (2014), 251–267.

    Article  MathSciNet  MATH  Google Scholar 

  63. R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J.Math. Anal. Appl. 389 (2012), 887–898.

    Article  MathSciNet  MATH  Google Scholar 

  64. R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst. 33 (2013), 2105–2137.

    Article  MathSciNet  MATH  Google Scholar 

  65. R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), 831–855.

    Article  MathSciNet  MATH  Google Scholar 

  66. R. Song and Z. Vondracek, Potential theory of subordinate killed Brownian motion in a domain, Probab. Theory Related Fields 125 (2003), 578–592.

    Article  MathSciNet  MATH  Google Scholar 

  67. M. Struwe, Variational Methods, Springer, Berlin-Heidelberg, 2010.

    MATH  Google Scholar 

  68. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam-New York, 1978.

    MATH  Google Scholar 

  69. L. Veron, Elliptic equations involving measures, Stationary Partial Differential Equations. Vol. I, North-Holland, Amsterdam, 2004, pp. 593–712.

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors were supported by Czech Science Foundation, project GJ19-14413Y. P.-T. Huynh gratefully acknowledges Prof. Jan Slovàk for the kind hospitality and great support during his study at Masaryk University. The authors would like to thank the anonymous referee for the comments which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuoc-Tai Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huynh, PT., Nguyen, PT. Semilinear nonlocal elliptic equations with source term and measure data. JAMA 149, 49–111 (2023). https://doi.org/10.1007/s11854-022-0245-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-022-0245-0

Navigation